人类心脏类器官:疾病建模和再生医学的最新革命。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Neda Roshanravan, Samad Ghaffari, Sepideh Bastani, Sara Pahlavan, Samira Asghari, Mohammad Amin Doustvandi, Sepideh Jalilzadeh-Razin, Mohammadreza Dastouri
{"title":"人类心脏类器官:疾病建模和再生医学的最新革命。","authors":"Neda Roshanravan,&nbsp;Samad Ghaffari,&nbsp;Sepideh Bastani,&nbsp;Sara Pahlavan,&nbsp;Samira Asghari,&nbsp;Mohammad Amin Doustvandi,&nbsp;Sepideh Jalilzadeh-Razin,&nbsp;Mohammadreza Dastouri","doi":"10.34172/jcvtr.2023.31830","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human cardiac organoids: A recent revolution in disease modeling and regenerative medicine.\",\"authors\":\"Neda Roshanravan,&nbsp;Samad Ghaffari,&nbsp;Sepideh Bastani,&nbsp;Sara Pahlavan,&nbsp;Samira Asghari,&nbsp;Mohammad Amin Doustvandi,&nbsp;Sepideh Jalilzadeh-Razin,&nbsp;Mohammadreza Dastouri\",\"doi\":\"10.34172/jcvtr.2023.31830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jcvtr.2023.31830\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jcvtr.2023.31830","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于心脏生物学、生理学和药理学研究的三维心肌组织近年来受到广泛关注。作为3D微型器官的类器官是由多种细胞类型(即诱导多能干细胞(iPSCs)或胚胎干细胞(ESCs))与其他支持性共培养细胞(如内皮细胞或成纤维细胞)形成的。心脏类器官培养技术在器官研究方面取得了重大进展,并允许建立组织再生和疾病模型。本文综述了人类心脏类器官平台在疾病生物学和心血管再生医学方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human cardiac organoids: A recent revolution in disease modeling and regenerative medicine.

Human cardiac organoids: A recent revolution in disease modeling and regenerative medicine.

Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信