强迫选择项目和非认知测试的诊断分类模型。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hung-Yu Huang
{"title":"强迫选择项目和非认知测试的诊断分类模型。","authors":"Hung-Yu Huang","doi":"10.1177/00131644211069906","DOIUrl":null,"url":null,"abstract":"<p><p>The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs) can provide information regarding the mastery status of test takers on latent discrete variables and are more commonly used for cognitive tests employed in educational settings than for noncognitive tests. The purpose of this study is to develop a new class of DCM for FC items under the higher-order DCM framework to meet the practical demands of simultaneously controlling for response biases and providing diagnostic classification information. By conducting a series of simulations and calibrating the model parameters with a Bayesian estimation, the study shows that, in general, the model parameters can be recovered satisfactorily with the use of long tests and large samples. More attributes improve the precision of the second-order latent trait estimation in a long test, but decrease the classification accuracy and the estimation quality of the structural parameters. When statements are allowed to load on two distinct attributes in paired comparison items, the specific-attribute condition produces better a parameter estimation than the overlap-attribute condition. Finally, an empirical analysis related to work-motivation measures is presented to demonstrate the applications and implications of the new model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/8c/10.1177_00131644211069906.PMC9806518.pdf","citationCount":"1","resultStr":"{\"title\":\"Diagnostic Classification Model for Forced-Choice Items and Noncognitive Tests.\",\"authors\":\"Hung-Yu Huang\",\"doi\":\"10.1177/00131644211069906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs) can provide information regarding the mastery status of test takers on latent discrete variables and are more commonly used for cognitive tests employed in educational settings than for noncognitive tests. The purpose of this study is to develop a new class of DCM for FC items under the higher-order DCM framework to meet the practical demands of simultaneously controlling for response biases and providing diagnostic classification information. By conducting a series of simulations and calibrating the model parameters with a Bayesian estimation, the study shows that, in general, the model parameters can be recovered satisfactorily with the use of long tests and large samples. More attributes improve the precision of the second-order latent trait estimation in a long test, but decrease the classification accuracy and the estimation quality of the structural parameters. When statements are allowed to load on two distinct attributes in paired comparison items, the specific-attribute condition produces better a parameter estimation than the overlap-attribute condition. Finally, an empirical analysis related to work-motivation measures is presented to demonstrate the applications and implications of the new model.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/8c/10.1177_00131644211069906.PMC9806518.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644211069906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211069906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

用于非认知测试的强迫选择(FC)项目格式通常会开发一套测量不同特征的回答选项,并指导被调查者根据自己的偏好在这些选项中做出判断,以控制在规范测试中常见的反应偏差。诊断分类模型(dcm)可以提供有关考生对潜在离散变量的掌握状态的信息,并且更常用于教育环境中采用的认知测试而不是非认知测试。本研究的目的是在高阶DCM框架下,开发一类新的FC项目的DCM,以满足同时控制反应偏倚和提供诊断分类信息的实际需求。通过一系列的模拟和贝叶斯估计校正模型参数,研究表明,在一般情况下,使用长时间的试验和大样本,模型参数可以得到满意的恢复。在长时间测试中,属性的增加提高了二阶潜在特征估计的精度,但降低了分类精度和结构参数的估计质量。当允许语句在成对比较项中加载两个不同的属性时,特定属性条件比重叠属性条件产生更好的参数估计。最后,通过对工作激励措施的实证分析,展示了新模型的应用和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diagnostic Classification Model for Forced-Choice Items and Noncognitive Tests.

Diagnostic Classification Model for Forced-Choice Items and Noncognitive Tests.

Diagnostic Classification Model for Forced-Choice Items and Noncognitive Tests.

Diagnostic Classification Model for Forced-Choice Items and Noncognitive Tests.

The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs) can provide information regarding the mastery status of test takers on latent discrete variables and are more commonly used for cognitive tests employed in educational settings than for noncognitive tests. The purpose of this study is to develop a new class of DCM for FC items under the higher-order DCM framework to meet the practical demands of simultaneously controlling for response biases and providing diagnostic classification information. By conducting a series of simulations and calibrating the model parameters with a Bayesian estimation, the study shows that, in general, the model parameters can be recovered satisfactorily with the use of long tests and large samples. More attributes improve the precision of the second-order latent trait estimation in a long test, but decrease the classification accuracy and the estimation quality of the structural parameters. When statements are allowed to load on two distinct attributes in paired comparison items, the specific-attribute condition produces better a parameter estimation than the overlap-attribute condition. Finally, an empirical analysis related to work-motivation measures is presented to demonstrate the applications and implications of the new model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信