大豆卵磷脂-没食子酸复合物对铁超载诱导的C57BL/6J小鼠氧化应激和肝损伤的改善作用。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Caihong Wu, Wenxin Zhang, Feifei Yan, Wenwen Dai, Fang Fang, Yanli Gao, Weiwei Cui
{"title":"大豆卵磷脂-没食子酸复合物对铁超载诱导的C57BL/6J小鼠氧化应激和肝损伤的改善作用。","authors":"Caihong Wu, Wenxin Zhang, Feifei Yan, Wenwen Dai, Fang Fang, Yanli Gao, Weiwei Cui","doi":"10.1080/13880209.2022.2151632","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored.</p><p><strong>Objective: </strong>This study investigates the antioxidant properties of SL-GAC <i>in vitro</i> and in mice, and its remediating effects against liver injury by iron-overloaded.</p><p><strong>Materials and methods: </strong><i>In vitro</i>, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. <i>In vivo</i>, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques.</p><p><strong>Results: </strong><i>In vitro</i>, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC<sub>50</sub> values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%).</p><p><strong>Conclusions: </strong>These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further <i>in vivo</i> and <i>in vitro</i> studies are needed to validate its potential in clinical medicine.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809354/pdf/","citationCount":"3","resultStr":"{\"title\":\"Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice.\",\"authors\":\"Caihong Wu, Wenxin Zhang, Feifei Yan, Wenwen Dai, Fang Fang, Yanli Gao, Weiwei Cui\",\"doi\":\"10.1080/13880209.2022.2151632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored.</p><p><strong>Objective: </strong>This study investigates the antioxidant properties of SL-GAC <i>in vitro</i> and in mice, and its remediating effects against liver injury by iron-overloaded.</p><p><strong>Materials and methods: </strong><i>In vitro</i>, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. <i>In vivo</i>, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques.</p><p><strong>Results: </strong><i>In vitro</i>, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC<sub>50</sub> values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%).</p><p><strong>Conclusions: </strong>These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further <i>in vivo</i> and <i>in vitro</i> studies are needed to validate its potential in clinical medicine.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809354/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13880209.2022.2151632\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2151632","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

背景:没食子酸(GA)和卵磷脂分别在抗氧化和给药方面发挥着重要作用。由GA和大豆卵磷脂合成的复合物(SL-GAC),显著提高了GA的生物利用度和药理活性。然而,SL-GAC的抗氧化活性及其对铁过载诱导的肝损伤的影响仍有待探索。目的:研究SL-GAC在体外和小鼠体内的抗氧化性能及其对铁超载肝损伤的修复作用。材料和方法:采用吸光度法测定SL-GAC的自由基清除活性、脂质过氧化抑制作用和铁还原能力。在体内,C57BL/6J小鼠被随机分为4组:对照组、铁过载组、铁超载组 + 去铁胺和铁过载 + SL-GAC。去铁胺治疗(150 mg/kg腹腔注射)和SL-GAC(200 mg/kg/口服)给所需组12 周,每天。通过组织病理学检查和分子生物学技术测定铁水平、氧化应激和生化参数。结果:SL-GAC在体外对DPPH和ABTS自由基具有清除活性,IC50分别为24.92和128.36 μg/mL。在C57BL/6J小鼠中,SL-GAC显著降低血清铁(22.82%)、肝铁(50.29%)、天冬氨酸转氨酶(25.97%)、丙氨酸转氨酶(38.07%)、γ-谷氨酰转移酶(42.11%)、丙二醛(19.82%)、总胆固醇(45.96%)、甘油三酯(34.90%)、铁蛋白轻链(18.51%)和转铁蛋白受体(27.39%)的水平,同时上调超氧化物歧化酶(24.69%)和谷胱甘肽(11.91%)的水平。需要进一步的体内和体外研究来验证其在临床医学中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice.

Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice.

Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice.

Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice.

Context: Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored.

Objective: This study investigates the antioxidant properties of SL-GAC in vitro and in mice, and its remediating effects against liver injury by iron-overloaded.

Materials and methods: In vitro, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. In vivo, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques.

Results: In vitro, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC50 values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%).

Conclusions: These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信