F. Barberi;E. Anselmino;A. Mazzoni;M. Goldfarb;S. Micera
{"title":"开发以用户为中心的神经集成下肢假肢。","authors":"F. Barberi;E. Anselmino;A. Mazzoni;M. Goldfarb;S. Micera","doi":"10.1109/RBME.2023.3309328","DOIUrl":null,"url":null,"abstract":"The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users’ needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"212-228"},"PeriodicalIF":17.2000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10232905","citationCount":"0","resultStr":"{\"title\":\"Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses\",\"authors\":\"F. Barberi;E. Anselmino;A. Mazzoni;M. Goldfarb;S. Micera\",\"doi\":\"10.1109/RBME.2023.3309328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users’ needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"17 \",\"pages\":\"212-228\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10232905\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10232905/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10232905/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses
The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users’ needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.