John Olichney, Jiangyi Xia, Kevin J Church, Hans J Moebius
{"title":"认知生物标志物在神经退行性疾病药物开发中的预测能力:P300事件相关电位的应用","authors":"John Olichney, Jiangyi Xia, Kevin J Church, Hans J Moebius","doi":"10.1155/2022/2104880","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's disease (AD), and their associated deterioration of cognitive function are common causes of disability. The slowly developing pathology of neurodegenerative diseases necessitates early diagnosis and monitored long-term treatment. Lack of effective therapies coupled with an improved rate of early diagnosis in our aging population have created an urgent need for the development of novel drugs, as well as the need for reliable biomarkers for treatment response. These issues are especially relevant for AD, in which the rate of clinical trial drug failures has been very high. Frequently used biomarker evaluation procedures, such as positron emission tomography or cerebrospinal fluid measurements of phospho-tau and amyloid beta, are invasive and costly, and not universally available or accessible. This review considers the functionality of the event-related potential (ERP) P300 methodology as a surrogate biomarker for predicting the procognitive potential of drugs in clinical development for neurocognitive disorders. Through the application of standardized electroencephalography (EEG) described here, ERP P300 can be reliably measured. The P300 waveform objectively measures large-scale neuronal network functioning and working memory processes. Increased ERP P300 latency has been reported throughout the literature in disorders of cognition, supporting the potential utility of ERP P300 as a biomarker in many neurological and neuropsychiatric disorders, including AD. Specifically, evidence presented here supports ERP P300 latency as a quantitative, unbiased measure for detecting changes in cognition in patients with AD dementia through the progression from mild to moderate cognitive impairment and after drug treatment.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666049/pdf/","citationCount":"4","resultStr":"{\"title\":\"Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential.\",\"authors\":\"John Olichney, Jiangyi Xia, Kevin J Church, Hans J Moebius\",\"doi\":\"10.1155/2022/2104880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases, such as Alzheimer's disease (AD), and their associated deterioration of cognitive function are common causes of disability. The slowly developing pathology of neurodegenerative diseases necessitates early diagnosis and monitored long-term treatment. Lack of effective therapies coupled with an improved rate of early diagnosis in our aging population have created an urgent need for the development of novel drugs, as well as the need for reliable biomarkers for treatment response. These issues are especially relevant for AD, in which the rate of clinical trial drug failures has been very high. Frequently used biomarker evaluation procedures, such as positron emission tomography or cerebrospinal fluid measurements of phospho-tau and amyloid beta, are invasive and costly, and not universally available or accessible. This review considers the functionality of the event-related potential (ERP) P300 methodology as a surrogate biomarker for predicting the procognitive potential of drugs in clinical development for neurocognitive disorders. Through the application of standardized electroencephalography (EEG) described here, ERP P300 can be reliably measured. The P300 waveform objectively measures large-scale neuronal network functioning and working memory processes. Increased ERP P300 latency has been reported throughout the literature in disorders of cognition, supporting the potential utility of ERP P300 as a biomarker in many neurological and neuropsychiatric disorders, including AD. Specifically, evidence presented here supports ERP P300 latency as a quantitative, unbiased measure for detecting changes in cognition in patients with AD dementia through the progression from mild to moderate cognitive impairment and after drug treatment.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666049/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2104880\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/2104880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential.
Neurodegenerative diseases, such as Alzheimer's disease (AD), and their associated deterioration of cognitive function are common causes of disability. The slowly developing pathology of neurodegenerative diseases necessitates early diagnosis and monitored long-term treatment. Lack of effective therapies coupled with an improved rate of early diagnosis in our aging population have created an urgent need for the development of novel drugs, as well as the need for reliable biomarkers for treatment response. These issues are especially relevant for AD, in which the rate of clinical trial drug failures has been very high. Frequently used biomarker evaluation procedures, such as positron emission tomography or cerebrospinal fluid measurements of phospho-tau and amyloid beta, are invasive and costly, and not universally available or accessible. This review considers the functionality of the event-related potential (ERP) P300 methodology as a surrogate biomarker for predicting the procognitive potential of drugs in clinical development for neurocognitive disorders. Through the application of standardized electroencephalography (EEG) described here, ERP P300 can be reliably measured. The P300 waveform objectively measures large-scale neuronal network functioning and working memory processes. Increased ERP P300 latency has been reported throughout the literature in disorders of cognition, supporting the potential utility of ERP P300 as a biomarker in many neurological and neuropsychiatric disorders, including AD. Specifically, evidence presented here supports ERP P300 latency as a quantitative, unbiased measure for detecting changes in cognition in patients with AD dementia through the progression from mild to moderate cognitive impairment and after drug treatment.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.