{"title":"抽动秽语综合征抽动动作的视频评估系统:建模、检测和评估。","authors":"Junya Wu, Tianshu Zhou, Yufan Guo, Yu Tian, Yuting Lou, Jianhua Feng, Jingsong Li","doi":"10.1007/s13755-023-00240-z","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioral ratings based on clinical observations are still the gold standard for screening, diagnosing, and assessing outcomes in Tourette syndrome. Detecting tic symptoms plays an important role in patient treatment and evaluation; accurate tic identification is the key to clinical diagnosis and evaluation. In this study, we proposed a tic action detection method using face video feature recognition for tic and control groups. Through facial ROI extraction, a 3D convolutional neural network was used to learn video feature representations, and multi-instance learning anomaly detection strategy was integrated to construct the tic action analysis and discrimination framework. We applied this tic recognition framework in our video dataset. The model evaluation results achieved average tic detection accuracy of 91.02%, precision of 77.07% and recall of 78.78%. And the tic score curve with postprocessing provided information of how the patient's twitches change over time. The detection results at the individual level indicated that our method can effectively detect tic actions in videos of Tourette patients without the need for fine labeling, which is significant for the long-term evaluation of patients with Tourette syndrome.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"39"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Video-based evaluation system for tic action in Tourette syndrome: modeling, detection, and evaluation.\",\"authors\":\"Junya Wu, Tianshu Zhou, Yufan Guo, Yu Tian, Yuting Lou, Jianhua Feng, Jingsong Li\",\"doi\":\"10.1007/s13755-023-00240-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Behavioral ratings based on clinical observations are still the gold standard for screening, diagnosing, and assessing outcomes in Tourette syndrome. Detecting tic symptoms plays an important role in patient treatment and evaluation; accurate tic identification is the key to clinical diagnosis and evaluation. In this study, we proposed a tic action detection method using face video feature recognition for tic and control groups. Through facial ROI extraction, a 3D convolutional neural network was used to learn video feature representations, and multi-instance learning anomaly detection strategy was integrated to construct the tic action analysis and discrimination framework. We applied this tic recognition framework in our video dataset. The model evaluation results achieved average tic detection accuracy of 91.02%, precision of 77.07% and recall of 78.78%. And the tic score curve with postprocessing provided information of how the patient's twitches change over time. The detection results at the individual level indicated that our method can effectively detect tic actions in videos of Tourette patients without the need for fine labeling, which is significant for the long-term evaluation of patients with Tourette syndrome.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"39\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00240-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00240-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Video-based evaluation system for tic action in Tourette syndrome: modeling, detection, and evaluation.
Behavioral ratings based on clinical observations are still the gold standard for screening, diagnosing, and assessing outcomes in Tourette syndrome. Detecting tic symptoms plays an important role in patient treatment and evaluation; accurate tic identification is the key to clinical diagnosis and evaluation. In this study, we proposed a tic action detection method using face video feature recognition for tic and control groups. Through facial ROI extraction, a 3D convolutional neural network was used to learn video feature representations, and multi-instance learning anomaly detection strategy was integrated to construct the tic action analysis and discrimination framework. We applied this tic recognition framework in our video dataset. The model evaluation results achieved average tic detection accuracy of 91.02%, precision of 77.07% and recall of 78.78%. And the tic score curve with postprocessing provided information of how the patient's twitches change over time. The detection results at the individual level indicated that our method can effectively detect tic actions in videos of Tourette patients without the need for fine labeling, which is significant for the long-term evaluation of patients with Tourette syndrome.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.