用于改善介电和热性能的聚苯乙烯颗粒/石墨烯复合材料的简易制备。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Wei Deng, Guoan Li, Wanyu Li, Meng Yang, Weiwei Cui
{"title":"用于改善介电和热性能的聚苯乙烯颗粒/石墨烯复合材料的简易制备。","authors":"Wei Deng,&nbsp;Guoan Li,&nbsp;Wanyu Li,&nbsp;Meng Yang,&nbsp;Weiwei Cui","doi":"10.1080/15685551.2022.2162282","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, polystyrene (PS)-based reduced graphene oxide (rGO) composites were prepared by mixing PS latex particles with graphene oxide (GO) and the following in-situ reduction. The structure and morphology of PS/rGO composites were characterized, and the effects of rGO content on the dielectric properties as well as thermal stability of PS/rGO composites were investigated. Results showed that rGO sheets armoured on the surface of PS particles and exhibited well dispersion in the PS matrix after hot compression. The introduction of rGO improved the dielectric properties of the composites remarkably. When rGO content was 0.12 vol%, the dielectric permittivity and breakdown strength of PS/rGO arrived at 6.3 at10<sup>2</sup> Hz and 107 kV/mm, with 50% and 35.4% enhancement compared to the pristine PS. Furthermore, PS/rGO presented better thermal stability than the pristine PS, but the overlapping of rGO sheets in PS matrix induced the instability of dielectric loss with frequency.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809381/pdf/","citationCount":"4","resultStr":"{\"title\":\"Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties.\",\"authors\":\"Wei Deng,&nbsp;Guoan Li,&nbsp;Wanyu Li,&nbsp;Meng Yang,&nbsp;Weiwei Cui\",\"doi\":\"10.1080/15685551.2022.2162282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, polystyrene (PS)-based reduced graphene oxide (rGO) composites were prepared by mixing PS latex particles with graphene oxide (GO) and the following in-situ reduction. The structure and morphology of PS/rGO composites were characterized, and the effects of rGO content on the dielectric properties as well as thermal stability of PS/rGO composites were investigated. Results showed that rGO sheets armoured on the surface of PS particles and exhibited well dispersion in the PS matrix after hot compression. The introduction of rGO improved the dielectric properties of the composites remarkably. When rGO content was 0.12 vol%, the dielectric permittivity and breakdown strength of PS/rGO arrived at 6.3 at10<sup>2</sup> Hz and 107 kV/mm, with 50% and 35.4% enhancement compared to the pristine PS. Furthermore, PS/rGO presented better thermal stability than the pristine PS, but the overlapping of rGO sheets in PS matrix induced the instability of dielectric loss with frequency.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809381/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2022.2162282\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2162282","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4

摘要

本文将聚苯乙烯(PS)乳胶颗粒与氧化石墨烯(GO)混合,并进行原位还原,制备了聚苯乙烯(PS)基还原性氧化石墨烯(rGO)复合材料。表征了PS/rGO复合材料的结构和形貌,研究了rGO含量对PS/rGO复合材料介电性能和热稳定性的影响。结果表明:热压缩后还原氧化石墨烯在PS颗粒表面包覆,并在PS基体中表现出良好的分散性;还原氧化石墨烯的引入显著改善了复合材料的介电性能。当rGO含量为0.12 vol%时,PS/rGO在102 Hz和107 kV/mm条件下的介电常数和击穿强度分别达到6.3,分别比原始PS提高了50%和35.4%。PS/rGO具有比原始PS更好的热稳定性,但由于PS基体中rGO片的重叠导致介电损耗随频率的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties.

Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties.

Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties.

Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties.

In this paper, polystyrene (PS)-based reduced graphene oxide (rGO) composites were prepared by mixing PS latex particles with graphene oxide (GO) and the following in-situ reduction. The structure and morphology of PS/rGO composites were characterized, and the effects of rGO content on the dielectric properties as well as thermal stability of PS/rGO composites were investigated. Results showed that rGO sheets armoured on the surface of PS particles and exhibited well dispersion in the PS matrix after hot compression. The introduction of rGO improved the dielectric properties of the composites remarkably. When rGO content was 0.12 vol%, the dielectric permittivity and breakdown strength of PS/rGO arrived at 6.3 at102 Hz and 107 kV/mm, with 50% and 35.4% enhancement compared to the pristine PS. Furthermore, PS/rGO presented better thermal stability than the pristine PS, but the overlapping of rGO sheets in PS matrix induced the instability of dielectric loss with frequency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信