{"title":"与所有转录本功能相反的lncRNA APTR转录本NR 134251.1通过调控增殖和凋亡相关基因抑制增殖,诱导凋亡。","authors":"Jinyi Yu, Shuting Li, Simin Shen, Qian Zhou, Jinyao Yin, Ruihuan Zhao, Jingwen Tan, Chenglan Jiang, Yuefeng He","doi":"10.1177/09603271221150247","DOIUrl":null,"url":null,"abstract":"Arsenic (As) exposure has been a global public health concern for hundreds of millions worldwide. LncRNA APTR (Alu-mediated p21 transcriptional regulator) plays an essential role in tumor growth and development. However, its function in arsenic-induced toxicological responses is still unknown. In this study, we found that the expressions of all transcripts and the transcript NR 134251.1 of APTR were increased in a dose-dependent manner in 16HBE cells treated with sodium arsenite (NaAsO2). Silencing the transcript NR 134251.1 of APTR inhibited cell proliferation and induced apoptosis. However, silencing all transcripts of APTR had the opposite function to the transcript NR 134251.1. Then we examined the protein level of the proliferation and apoptosis-related genes after silencing the transcript NR 134251.1 of APTR. The results showed that silencing the transcript NR 134251.1 of APTR up-regulated the expression of transcription factor E2F1 and regulated its downstream genes involved in proliferation and apoptosis, including p53, phospho-p53-S392, phospho-p53-T55, p21, Cyclin D1, PUMA, Fas, Bim, BIK, Caspase-3, Caspase-7, and Cyt-c. In conclusion, arsenic induced APTR expression and the transcript NR 134251.1 of APTR have an opposite function to all transcripts, providing a theoretical basis for the prevention and treatment of arsenic exposure.","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":"42 ","pages":"9603271221150247"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcript NR 134251.1 of lncRNA APTR with an opposite function to all transcripts inhibits proliferation and induces apoptosis by regulating proliferation and apoptosis-related genes.\",\"authors\":\"Jinyi Yu, Shuting Li, Simin Shen, Qian Zhou, Jinyao Yin, Ruihuan Zhao, Jingwen Tan, Chenglan Jiang, Yuefeng He\",\"doi\":\"10.1177/09603271221150247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arsenic (As) exposure has been a global public health concern for hundreds of millions worldwide. LncRNA APTR (Alu-mediated p21 transcriptional regulator) plays an essential role in tumor growth and development. However, its function in arsenic-induced toxicological responses is still unknown. In this study, we found that the expressions of all transcripts and the transcript NR 134251.1 of APTR were increased in a dose-dependent manner in 16HBE cells treated with sodium arsenite (NaAsO2). Silencing the transcript NR 134251.1 of APTR inhibited cell proliferation and induced apoptosis. However, silencing all transcripts of APTR had the opposite function to the transcript NR 134251.1. Then we examined the protein level of the proliferation and apoptosis-related genes after silencing the transcript NR 134251.1 of APTR. The results showed that silencing the transcript NR 134251.1 of APTR up-regulated the expression of transcription factor E2F1 and regulated its downstream genes involved in proliferation and apoptosis, including p53, phospho-p53-S392, phospho-p53-T55, p21, Cyclin D1, PUMA, Fas, Bim, BIK, Caspase-3, Caspase-7, and Cyt-c. In conclusion, arsenic induced APTR expression and the transcript NR 134251.1 of APTR have an opposite function to all transcripts, providing a theoretical basis for the prevention and treatment of arsenic exposure.\",\"PeriodicalId\":13181,\"journal\":{\"name\":\"Human & Experimental Toxicology\",\"volume\":\"42 \",\"pages\":\"9603271221150247\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human & Experimental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09603271221150247\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271221150247","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The transcript NR 134251.1 of lncRNA APTR with an opposite function to all transcripts inhibits proliferation and induces apoptosis by regulating proliferation and apoptosis-related genes.
Arsenic (As) exposure has been a global public health concern for hundreds of millions worldwide. LncRNA APTR (Alu-mediated p21 transcriptional regulator) plays an essential role in tumor growth and development. However, its function in arsenic-induced toxicological responses is still unknown. In this study, we found that the expressions of all transcripts and the transcript NR 134251.1 of APTR were increased in a dose-dependent manner in 16HBE cells treated with sodium arsenite (NaAsO2). Silencing the transcript NR 134251.1 of APTR inhibited cell proliferation and induced apoptosis. However, silencing all transcripts of APTR had the opposite function to the transcript NR 134251.1. Then we examined the protein level of the proliferation and apoptosis-related genes after silencing the transcript NR 134251.1 of APTR. The results showed that silencing the transcript NR 134251.1 of APTR up-regulated the expression of transcription factor E2F1 and regulated its downstream genes involved in proliferation and apoptosis, including p53, phospho-p53-S392, phospho-p53-T55, p21, Cyclin D1, PUMA, Fas, Bim, BIK, Caspase-3, Caspase-7, and Cyt-c. In conclusion, arsenic induced APTR expression and the transcript NR 134251.1 of APTR have an opposite function to all transcripts, providing a theoretical basis for the prevention and treatment of arsenic exposure.
期刊介绍:
Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods