通过腺相关病毒1或6的气管内或静脉递送对航空、肺、肝和胰腺的Ferret表面和基底细胞的转导。

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Human gene therapy Pub Date : 2023-11-01 Epub Date: 2023-10-16 DOI:10.1089/hum.2023.095
Murali K Yanda, Adi Zeidan, Cristian Ciobanu, Jessica Izzi, William B Guggino, Liudmila Cebotaru
{"title":"通过腺相关病毒1或6的气管内或静脉递送对航空、肺、肝和胰腺的Ferret表面和基底细胞的转导。","authors":"Murali K Yanda, Adi Zeidan, Cristian Ciobanu, Jessica Izzi, William B Guggino, Liudmila Cebotaru","doi":"10.1089/hum.2023.095","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is potentially treatable by gene therapy. Since the identification of the CF gene, preclinical and clinical trials have concentrated on achieving effective gene therapy targeting the lung. However, the lung has proven to be a formidable barrier to successful gene therapy especially for CF, and many clinical trials failed to achieve efficacy. Recent advances in vector design and adeno-associated virus (AAV) serotypes have increased the chances of success. Given that CF is a multi-organ disease, the goal of this study was to test whether a gene therapy approach involving AAV1 or AAV6 vector delivery via the systemic circulation would at the same time overcome the barrier of lung delivery and transduce organs commonly affected by CF. To accomplish this, we sprayed AAV1 containing green fluorescent protein (GFP) into the trachea or injected it intravenously (IV). We also tested AAV6 injected IV. No adverse events were noted. Ferrets were necropsied 30 days after vector delivery. AAV1 or AAV6 vector genomes, messenger RNA (mRNA) expression, and GFP were detected in all the tracheal and lung samples from the treated animals, whether AAV1 was sprayed into the trachea or injected IV or AAV6 was injected IV. Importantly, both surface epithelial and basal cells of the trachea and lung airways were successfully transduced, regardless of which route of delivery or vector serotype used for transduction. We detected also AAV1 and AAV6 vector genomes, mRNA expression, and GFP in the livers and pancreases, particularly in the acinar cells of the pancreatic duct. These data suggest that gene transfer is attainable in the airways, liver, and pancreas using either serotype, AAV1 or AAV6. Given that these same organs are affected in CF, systemic delivery of AAV may be the preferred route of delivery for a gene therapy for CF.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transduction of Ferret Surface and Basal Cells of Airways, Lung, Liver, and Pancreas via Intratracheal or Intravenous Delivery of Adeno-Associated Virus 1 or 6.\",\"authors\":\"Murali K Yanda, Adi Zeidan, Cristian Ciobanu, Jessica Izzi, William B Guggino, Liudmila Cebotaru\",\"doi\":\"10.1089/hum.2023.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystic fibrosis (CF) is potentially treatable by gene therapy. Since the identification of the CF gene, preclinical and clinical trials have concentrated on achieving effective gene therapy targeting the lung. However, the lung has proven to be a formidable barrier to successful gene therapy especially for CF, and many clinical trials failed to achieve efficacy. Recent advances in vector design and adeno-associated virus (AAV) serotypes have increased the chances of success. Given that CF is a multi-organ disease, the goal of this study was to test whether a gene therapy approach involving AAV1 or AAV6 vector delivery via the systemic circulation would at the same time overcome the barrier of lung delivery and transduce organs commonly affected by CF. To accomplish this, we sprayed AAV1 containing green fluorescent protein (GFP) into the trachea or injected it intravenously (IV). We also tested AAV6 injected IV. No adverse events were noted. Ferrets were necropsied 30 days after vector delivery. AAV1 or AAV6 vector genomes, messenger RNA (mRNA) expression, and GFP were detected in all the tracheal and lung samples from the treated animals, whether AAV1 was sprayed into the trachea or injected IV or AAV6 was injected IV. Importantly, both surface epithelial and basal cells of the trachea and lung airways were successfully transduced, regardless of which route of delivery or vector serotype used for transduction. We detected also AAV1 and AAV6 vector genomes, mRNA expression, and GFP in the livers and pancreases, particularly in the acinar cells of the pancreatic duct. These data suggest that gene transfer is attainable in the airways, liver, and pancreas using either serotype, AAV1 or AAV6. Given that these same organs are affected in CF, systemic delivery of AAV may be the preferred route of delivery for a gene therapy for CF.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2023.095\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2023.095","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

囊性纤维化(CF)有可能通过基因治疗来治疗。自从CF基因被鉴定以来,临床前和临床试验都集中在实现针对肺部的有效基因治疗上。然而,肺部已被证明是成功基因治疗的巨大障碍,尤其是CF,许多临床试验都未能达到疗效。载体设计和腺相关病毒(AAV)血清型的最新进展增加了成功的机会。鉴于CF是一种多器官疾病,本研究的目的是测试通过体循环输送AAV1或AAV6载体的基因治疗方法是否能同时克服肺部输送和转导通常受CF影响的器官的障碍,我们将含有绿色荧光蛋白(GFP)的AAV1喷入气管或静脉注射(IV)。我们还测试了注射AAV6的IV。没有发现不良事件。在载体递送后30天对Ferrets进行尸检。在来自处理动物的所有气管和肺样本中检测到AAV1或AAV6载体基因组、信使RNA(mRNA)表达和GFP,无论是将AAV1喷洒到气管中还是注射IV或注射AAV6。重要的是,气管和肺气道的表面上皮细胞和基底细胞均成功转导,而不管用于转导的是哪种递送途径或载体血清型。我们还在肝脏和胰腺中,特别是在胰管腺泡细胞中,检测到AAV1和AAV6载体基因组、mRNA表达和GFP。这些数据表明,使用血清型AAV1或AAV6,可以在气道、肝脏和胰腺中进行基因转移。考虑到这些相同的器官在CF中受到影响,AAV的全身递送可能是CF基因治疗的首选递送途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transduction of Ferret Surface and Basal Cells of Airways, Lung, Liver, and Pancreas via Intratracheal or Intravenous Delivery of Adeno-Associated Virus 1 or 6.

Cystic fibrosis (CF) is potentially treatable by gene therapy. Since the identification of the CF gene, preclinical and clinical trials have concentrated on achieving effective gene therapy targeting the lung. However, the lung has proven to be a formidable barrier to successful gene therapy especially for CF, and many clinical trials failed to achieve efficacy. Recent advances in vector design and adeno-associated virus (AAV) serotypes have increased the chances of success. Given that CF is a multi-organ disease, the goal of this study was to test whether a gene therapy approach involving AAV1 or AAV6 vector delivery via the systemic circulation would at the same time overcome the barrier of lung delivery and transduce organs commonly affected by CF. To accomplish this, we sprayed AAV1 containing green fluorescent protein (GFP) into the trachea or injected it intravenously (IV). We also tested AAV6 injected IV. No adverse events were noted. Ferrets were necropsied 30 days after vector delivery. AAV1 or AAV6 vector genomes, messenger RNA (mRNA) expression, and GFP were detected in all the tracheal and lung samples from the treated animals, whether AAV1 was sprayed into the trachea or injected IV or AAV6 was injected IV. Importantly, both surface epithelial and basal cells of the trachea and lung airways were successfully transduced, regardless of which route of delivery or vector serotype used for transduction. We detected also AAV1 and AAV6 vector genomes, mRNA expression, and GFP in the livers and pancreases, particularly in the acinar cells of the pancreatic duct. These data suggest that gene transfer is attainable in the airways, liver, and pancreas using either serotype, AAV1 or AAV6. Given that these same organs are affected in CF, systemic delivery of AAV may be the preferred route of delivery for a gene therapy for CF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信