{"title":"肉毒杆菌神经毒素的工业生产和治疗应用:A 型肉毒杆菌的作用。","authors":"S Danish Kadir","doi":"10.2174/2211738511666230825150259","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxin has remarkably transitioned from a food safety hazard and biological warfare to an effective therapeutic drug. Currently, botulinum neurotoxins have seven serotypes (BoNT/A-G) in the form of protein complexes produced by <i>Clostridium</i>, a gram-positive and sporeforming bacteria. The conversion of toxins into useful drug substances of choice using the biotechnological process is tremendously increasing. Recent studies have shown that Botulinum neurotoxin-A (BoNT/A) has different biological activities and potencies in experimental and clinical conditions. They also indicate that the manufacturing process influences the potency and efficacy of BoNT/A drugs. Thus, this review focuses on the following criteria: detailed Fed-batch operation that includes the upstream and downstream processing of BoNT/A, the underlying mechanism behind the neurotoxic effect, and commercially available FDA-approved BoNT/A products and their therapeutic uses. Still, some research gaps exist in the mechanism for the treatment of psychiatric disorders.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"99-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Production and Therapeutic Application of Botulinum Neurotoxin: The Role of <i>C. botulinum</i> Type A.\",\"authors\":\"S Danish Kadir\",\"doi\":\"10.2174/2211738511666230825150259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulinum neurotoxin has remarkably transitioned from a food safety hazard and biological warfare to an effective therapeutic drug. Currently, botulinum neurotoxins have seven serotypes (BoNT/A-G) in the form of protein complexes produced by <i>Clostridium</i>, a gram-positive and sporeforming bacteria. The conversion of toxins into useful drug substances of choice using the biotechnological process is tremendously increasing. Recent studies have shown that Botulinum neurotoxin-A (BoNT/A) has different biological activities and potencies in experimental and clinical conditions. They also indicate that the manufacturing process influences the potency and efficacy of BoNT/A drugs. Thus, this review focuses on the following criteria: detailed Fed-batch operation that includes the upstream and downstream processing of BoNT/A, the underlying mechanism behind the neurotoxic effect, and commercially available FDA-approved BoNT/A products and their therapeutic uses. Still, some research gaps exist in the mechanism for the treatment of psychiatric disorders.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"99-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2211738511666230825150259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2211738511666230825150259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Industrial Production and Therapeutic Application of Botulinum Neurotoxin: The Role of C. botulinum Type A.
Botulinum neurotoxin has remarkably transitioned from a food safety hazard and biological warfare to an effective therapeutic drug. Currently, botulinum neurotoxins have seven serotypes (BoNT/A-G) in the form of protein complexes produced by Clostridium, a gram-positive and sporeforming bacteria. The conversion of toxins into useful drug substances of choice using the biotechnological process is tremendously increasing. Recent studies have shown that Botulinum neurotoxin-A (BoNT/A) has different biological activities and potencies in experimental and clinical conditions. They also indicate that the manufacturing process influences the potency and efficacy of BoNT/A drugs. Thus, this review focuses on the following criteria: detailed Fed-batch operation that includes the upstream and downstream processing of BoNT/A, the underlying mechanism behind the neurotoxic effect, and commercially available FDA-approved BoNT/A products and their therapeutic uses. Still, some research gaps exist in the mechanism for the treatment of psychiatric disorders.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.