跟踪各种能力的发展

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Maria Bolsinova, Matthieu J. S. Brinkhuis, Abe D. Hofman, Gunter Maris
{"title":"跟踪各种能力的发展","authors":"Maria Bolsinova,&nbsp;Matthieu J. S. Brinkhuis,&nbsp;Abe D. Hofman,&nbsp;Gunter Maris","doi":"10.1111/bmsp.12276","DOIUrl":null,"url":null,"abstract":"<p>Recently, the Urnings algorithm (Bolsinova <i>et al</i>.,  2022, <i>J. R. Stat. Soc. Ser. C Appl. Statistics</i>, <i>71</i>, 91) has been proposed that allows for tracking the development of abilities of the learners and the difficulties of the items in adaptive learning systems. It is a simple and scalable algorithm which is suited for large-scale applications in which large streams of data are coming into the system and on-the-fly updating is needed. Compared to alternatives like the Elo rating system and its extensions, the Urnings rating system allows the uncertainty of the ratings to be evaluated and accounts for adaptive item selection which, if not corrected for, may distort the ratings. In this paper we extend the Urnings algorithm to allow for both between-item and within-item multidimensionality. This allows for tracking the development of interrelated abilities both at the individual and the population level. We present formal derivations of the multidimensional Urnings algorithm, illustrate its properties in simulations, and present an application to data from an adaptive learning system for primary school mathematics called Math Garden.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tracking a multitude of abilities as they develop\",\"authors\":\"Maria Bolsinova,&nbsp;Matthieu J. S. Brinkhuis,&nbsp;Abe D. Hofman,&nbsp;Gunter Maris\",\"doi\":\"10.1111/bmsp.12276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the Urnings algorithm (Bolsinova <i>et al</i>.,  2022, <i>J. R. Stat. Soc. Ser. C Appl. Statistics</i>, <i>71</i>, 91) has been proposed that allows for tracking the development of abilities of the learners and the difficulties of the items in adaptive learning systems. It is a simple and scalable algorithm which is suited for large-scale applications in which large streams of data are coming into the system and on-the-fly updating is needed. Compared to alternatives like the Elo rating system and its extensions, the Urnings rating system allows the uncertainty of the ratings to be evaluated and accounts for adaptive item selection which, if not corrected for, may distort the ratings. In this paper we extend the Urnings algorithm to allow for both between-item and within-item multidimensionality. This allows for tracking the development of interrelated abilities both at the individual and the population level. We present formal derivations of the multidimensional Urnings algorithm, illustrate its properties in simulations, and present an application to data from an adaptive learning system for primary school mathematics called Math Garden.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12276\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12276","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Urnings算法(Bolsinova et al., 2022, J. R. Stat. Soc.)爵士。C:。统计,71,91)已经提出,允许跟踪学习者的能力发展和项目的困难在自适应学习系统。它是一种简单且可扩展的算法,适合于大量数据流进入系统并需要实时更新的大规模应用程序。与Elo评级系统及其扩展相比,Urnings评级系统允许评估评级的不确定性,并考虑到自适应项目选择,如果不加以纠正,可能会扭曲评级。在本文中,我们扩展了Urnings算法,以允许项目间和项目内的多维性。这样就可以在个人和群体水平上跟踪相互关联的能力的发展。我们提出了多维Urnings算法的形式化推导,在模拟中说明了它的性质,并提出了一个应用于小学数学自适应学习系统“数学花园”的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tracking a multitude of abilities as they develop

Tracking a multitude of abilities as they develop

Recently, the Urnings algorithm (Bolsinova et al.,  2022, J. R. Stat. Soc. Ser. C Appl. Statistics, 71, 91) has been proposed that allows for tracking the development of abilities of the learners and the difficulties of the items in adaptive learning systems. It is a simple and scalable algorithm which is suited for large-scale applications in which large streams of data are coming into the system and on-the-fly updating is needed. Compared to alternatives like the Elo rating system and its extensions, the Urnings rating system allows the uncertainty of the ratings to be evaluated and accounts for adaptive item selection which, if not corrected for, may distort the ratings. In this paper we extend the Urnings algorithm to allow for both between-item and within-item multidimensionality. This allows for tracking the development of interrelated abilities both at the individual and the population level. We present formal derivations of the multidimensional Urnings algorithm, illustrate its properties in simulations, and present an application to data from an adaptive learning system for primary school mathematics called Math Garden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信