{"title":"庞加莱不变量","authors":"Markus Dürr, Alexandre Kabanov, Christian Okonek","doi":"10.1016/j.top.2007.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>We construct an obstruction theory for relative Hilbert schemes in the sense of [K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1) (1997) 45–88] and compute it explicitly for relative Hilbert schemes of divisors on smooth projective varieties. In the special case of curves on a surface <span><math><mi>V</mi></math></span>, our obstruction theory determines a virtual fundamental class <span><math><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which we use to define Poincaré invariants <span><span><span><math><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>)</mo></mrow><mo>:</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mo>⟶</mo><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mtext>.</mtext></math></span></span></span> These maps are invariant under deformations, satisfy a blow-up formula, and a wall crossing formula for surfaces with <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. For the case <span><math><mi>q</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>, we calculate the wall crossing formula explicitly in terms of fundamental classes of certain Brill–Noether loci for curves. We determine the invariants completely for ruled surfaces, and rederive from this classical results of Nagata and Lange. The invariant <span><math><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>)</mo></mrow></math></span> of an elliptic fibration is computed in terms of its multiple fibers.</p><p>When the fibered product <span><math><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mo>×</mo></mrow><mrow><msubsup><mrow><mstyle><mi>Pic</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></msub><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>m</mi></mrow></msubsup></math></span> is empty, there exists a more geometric obstruction theory, which gives rise to a second virtual fundamental class <span><math><mrow><mo>{</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>}</mo></mrow><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>. We show that <span><math><mrow><mo>{</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>}</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow></math></span> when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>, and use the second obstruction theory to prove that <span><math><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>=</mo><mn>0</mn></math></span> when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span> and <span><math><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mo>×</mo></mrow><mrow><msubsup><mrow><mstyle><mi>Pic</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></msub><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>m</mi></mrow></msubsup><mo>=</mo><mo>0̸</mo></math></span>.</p><p>We conjecture that our Poincaré invariants coincide with the full Seiberg–Witten invariants of [Ch. Okonek, A. Teleman, Seiberg–Witten invariants for manifolds with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and the universal wall crossing formula, Internat. J. Math. 7 (6) (1996) 811–832] computed with respect to the canonical orientation data. The main evidence for this conjecture is based on the existence of an Kobayashi–Hitchin isomorphism which identifies the moduli spaces of monopoles with the corresponding Hilbert schemes. We expect this isomorphism to identify also the corresponding virtual fundamental classes. This more conceptual conjecture is true in the smooth case. Using the blow-up formula, the wall crossing formula, and a case by case analysis for surfaces of Kodaira dimension less than 2, we are able to reduce our conjecture to the following assertion: <span><math><mo>deg</mo><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></mrow></mrow></msup></math></span> for minimal surfaces <span><math><mi>V</mi></math></span> of general type with <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span> and <span><math><mi>q</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 3","pages":"Pages 225-294"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.004","citationCount":"18","resultStr":"{\"title\":\"Poincaré invariants\",\"authors\":\"Markus Dürr, Alexandre Kabanov, Christian Okonek\",\"doi\":\"10.1016/j.top.2007.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct an obstruction theory for relative Hilbert schemes in the sense of [K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1) (1997) 45–88] and compute it explicitly for relative Hilbert schemes of divisors on smooth projective varieties. In the special case of curves on a surface <span><math><mi>V</mi></math></span>, our obstruction theory determines a virtual fundamental class <span><math><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which we use to define Poincaré invariants <span><span><span><math><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>)</mo></mrow><mo>:</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mo>⟶</mo><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mtext>.</mtext></math></span></span></span> These maps are invariant under deformations, satisfy a blow-up formula, and a wall crossing formula for surfaces with <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. For the case <span><math><mi>q</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>, we calculate the wall crossing formula explicitly in terms of fundamental classes of certain Brill–Noether loci for curves. We determine the invariants completely for ruled surfaces, and rederive from this classical results of Nagata and Lange. The invariant <span><math><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>V</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>)</mo></mrow></math></span> of an elliptic fibration is computed in terms of its multiple fibers.</p><p>When the fibered product <span><math><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mo>×</mo></mrow><mrow><msubsup><mrow><mstyle><mi>Pic</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></msub><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>m</mi></mrow></msubsup></math></span> is empty, there exists a more geometric obstruction theory, which gives rise to a second virtual fundamental class <span><math><mrow><mo>{</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>}</mo></mrow><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>. We show that <span><math><mrow><mo>{</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>}</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow></math></span> when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>, and use the second obstruction theory to prove that <span><math><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>=</mo><mn>0</mn></math></span> when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span> and <span><math><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mo>×</mo></mrow><mrow><msubsup><mrow><mstyle><mi>Pic</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></msub><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>m</mi></mrow></msubsup><mo>=</mo><mo>0̸</mo></math></span>.</p><p>We conjecture that our Poincaré invariants coincide with the full Seiberg–Witten invariants of [Ch. Okonek, A. Teleman, Seiberg–Witten invariants for manifolds with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and the universal wall crossing formula, Internat. J. Math. 7 (6) (1996) 811–832] computed with respect to the canonical orientation data. The main evidence for this conjecture is based on the existence of an Kobayashi–Hitchin isomorphism which identifies the moduli spaces of monopoles with the corresponding Hilbert schemes. We expect this isomorphism to identify also the corresponding virtual fundamental classes. This more conceptual conjecture is true in the smooth case. Using the blow-up formula, the wall crossing formula, and a case by case analysis for surfaces of Kodaira dimension less than 2, we are able to reduce our conjecture to the following assertion: <span><math><mo>deg</mo><mrow><mo>[</mo><mrow><mo>[</mo><msubsup><mrow><mstyle><mi>Hilb</mi></mstyle></mrow><mrow><mi>V</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>]</mo></mrow><mo>]</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></mrow></mrow></msup></math></span> for minimal surfaces <span><math><mi>V</mi></math></span> of general type with <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span> and <span><math><mi>q</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 3\",\"pages\":\"Pages 225-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.02.004\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
摘要
我们构造了在[K]意义上的相对Hilbert格式的阻碍理论。范泰奇,《内在法锥》,《发明》。数学。128(1)(1997)45-88]并显式地计算光滑投影变异体上的因子的相对Hilbert格式。在曲面V上曲线的特殊情况下,我们的阻碍理论确定了一个虚基本类[[HilbVm]]∈Am(m−k)2(HilbVm),我们用它来定义poincar不变量(PV+,PV−):H2(V,Z) Λ∗H1(V,Z)×Λ∗H1(V,Z)。对于pg(V)=0的曲面,这些映射在变形下是不变的,满足膨胀公式和壁相交公式。对于q(V)≥1的情况,我们根据曲线的某些Brill-Noether轨迹的基本类显式地计算了壁穿越公式。我们完全确定了直纹曲面的不变量,并从Nagata和Lange的经典结果中重新推出。椭圆纤维的不变量(PV+,PV−)是根据它的多个纤维来计算的。当纤维积HilbVm×PicVmHilbVk−m为空时,存在一个更几何的阻塞理论,由此产生第二个虚基类{HilbVm}∈Am(m−k)2+pg(V)(HilbVm)。我们证明了当pg(V)=0时{HilbVm}=[[HilbVm]],并利用第二阻碍理论证明了当pg(V)>0和HilbVm×PicVmHilbVk−m=0时[[HilbVm]]=0。我们推测我们的poincar不变量与Ch. Okonek, A. Teleman的完整Seiberg-Witten不变量一致,b+=1流形的Seiberg-Witten不变量,以及通用壁交叉公式Internat。[j] .数学,7(6)(1996)811-832]。这个猜想的主要证据是基于一个Kobayashi-Hitchin同构的存在,该同构将单极子的模空间与相应的Hilbert格式相识别。我们期望这种同构也能识别相应的虚拟基类。这个更概念化的猜想在光滑的情况下是正确的。利用放大公式、壁交叉公式以及对Kodaira维数小于2的曲面的逐例分析,我们能够将我们的猜想约简为以下断言:对于pg(V)>0和q(V)>0的一般类型的最小曲面V, deg[[HilbVm]]=(−1)χ(OV)。
We construct an obstruction theory for relative Hilbert schemes in the sense of [K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1) (1997) 45–88] and compute it explicitly for relative Hilbert schemes of divisors on smooth projective varieties. In the special case of curves on a surface , our obstruction theory determines a virtual fundamental class , which we use to define Poincaré invariants These maps are invariant under deformations, satisfy a blow-up formula, and a wall crossing formula for surfaces with . For the case , we calculate the wall crossing formula explicitly in terms of fundamental classes of certain Brill–Noether loci for curves. We determine the invariants completely for ruled surfaces, and rederive from this classical results of Nagata and Lange. The invariant of an elliptic fibration is computed in terms of its multiple fibers.
When the fibered product is empty, there exists a more geometric obstruction theory, which gives rise to a second virtual fundamental class . We show that when , and use the second obstruction theory to prove that when and .
We conjecture that our Poincaré invariants coincide with the full Seiberg–Witten invariants of [Ch. Okonek, A. Teleman, Seiberg–Witten invariants for manifolds with , and the universal wall crossing formula, Internat. J. Math. 7 (6) (1996) 811–832] computed with respect to the canonical orientation data. The main evidence for this conjecture is based on the existence of an Kobayashi–Hitchin isomorphism which identifies the moduli spaces of monopoles with the corresponding Hilbert schemes. We expect this isomorphism to identify also the corresponding virtual fundamental classes. This more conceptual conjecture is true in the smooth case. Using the blow-up formula, the wall crossing formula, and a case by case analysis for surfaces of Kodaira dimension less than 2, we are able to reduce our conjecture to the following assertion: for minimal surfaces of general type with and .