校准离子和细胞心脏电生理学模型。

IF 7.9 Q1 Medicine
Dominic G Whittaker, Michael Clerx, Chon Lok Lei, David J Christini, Gary R Mirams
{"title":"校准离子和细胞心脏电生理学模型。","authors":"Dominic G Whittaker, Michael Clerx, Chon Lok Lei, David J Christini, Gary R Mirams","doi":"10.1002/wsbm.1482","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"12 4","pages":"e1482"},"PeriodicalIF":7.9000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Calibration of ionic and cellular cardiac electrophysiology models.\",\"authors\":\"Dominic G Whittaker, Michael Clerx, Chon Lok Lei, David J Christini, Gary R Mirams\",\"doi\":\"10.1002/wsbm.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":\"12 4\",\"pages\":\"e1482\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

心脏电生理学模型是最成熟、研究最深入的生物系统数学模型之一。随着模型越来越多地用于定量而非定性预测,这种成熟性也带来了新的挑战。因此,根据实验数据集校准离子电流和动作电位(AP)模型中的参数是构建预测模型的关键步骤。这篇综述强调了心脏模型校准的一些基本概念,旨在让从事其他生物学领域工作的计算和数学建模人员易于理解。我们讨论了电生理学领域在离子通道和细胞 AP 尺度上的经典和最新校准方法。最后,我们将讨论迄今为止的工作所提出的诸多挑战,以及对校准过程进行可重复描述的必要性,以便使模型能够根据新的数据集进行重新校准,并在此基础上开展新的研究。本文归类于分析和计算方法 > 计算方法 生理学 > 健康和疾病中的哺乳动物生理学 系统特性和过程的模型 > 细胞模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Calibration of ionic and cellular cardiac electrophysiology models.

Calibration of ionic and cellular cardiac electrophysiology models.

Calibration of ionic and cellular cardiac electrophysiology models.

Calibration of ionic and cellular cardiac electrophysiology models.

Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信