CA-UNet分割能很好地预测缺血性中风的风险。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yuqi Zhang, Mengbo Yu, Chao Tong, Yanqing Zhao, Jintao Han
{"title":"CA-UNet分割能很好地预测缺血性中风的风险。","authors":"Yuqi Zhang, Mengbo Yu, Chao Tong, Yanqing Zhao, Jintao Han","doi":"10.1007/s12539-023-00583-x","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is still the World's second major factor of death, as well as the third major factor of death and disability. Ischemic stroke is a type of stroke, in which early detection and treatment are the keys to preventing ischemic strokes. However, due to the limitation of privacy protection and labeling difficulties, there are only a few studies on the intelligent automatic diagnosis of stroke or ischemic stroke, and the results are unsatisfactory. Therefore, we collect some data and propose a 3D carotid Computed Tomography Angiography (CTA) image segmentation model called CA-UNet for fully automated extraction of carotid arteries. We explore the number of down-sampling times applicable to carotid segmentation and design a multi-scale loss function to resolve the loss of detailed features during the process of down-sampling. Moreover, based on CA-Unet, we propose an ischemic stroke risk prediction model to predict the risk in patients using their 3D CTA images, electronic medical records, and medical history. We have validated the efficacy of our segmentation model and prediction model through comparison tests. Our method can provide reliable diagnoses and results that benefit patients and medical professionals.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"58-72"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CA-UNet Segmentation Makes a Good Ischemic Stroke Risk Prediction.\",\"authors\":\"Yuqi Zhang, Mengbo Yu, Chao Tong, Yanqing Zhao, Jintao Han\",\"doi\":\"10.1007/s12539-023-00583-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is still the World's second major factor of death, as well as the third major factor of death and disability. Ischemic stroke is a type of stroke, in which early detection and treatment are the keys to preventing ischemic strokes. However, due to the limitation of privacy protection and labeling difficulties, there are only a few studies on the intelligent automatic diagnosis of stroke or ischemic stroke, and the results are unsatisfactory. Therefore, we collect some data and propose a 3D carotid Computed Tomography Angiography (CTA) image segmentation model called CA-UNet for fully automated extraction of carotid arteries. We explore the number of down-sampling times applicable to carotid segmentation and design a multi-scale loss function to resolve the loss of detailed features during the process of down-sampling. Moreover, based on CA-Unet, we propose an ischemic stroke risk prediction model to predict the risk in patients using their 3D CTA images, electronic medical records, and medical history. We have validated the efficacy of our segmentation model and prediction model through comparison tests. Our method can provide reliable diagnoses and results that benefit patients and medical professionals.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"58-72\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00583-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00583-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中风仍然是世界第二大死亡因素,也是第三大死亡和残疾因素。缺血性脑卒中是脑卒中的一种,早发现、早治疗是预防缺血性脑卒中的关键。然而,由于隐私保护的限制和标注的困难,关于脑卒中或缺血性脑卒中智能自动识别的研究屈指可数,效果也不尽如人意。因此,我们收集了一些数据,提出了一种名为 CA-UNet 的三维颈动脉计算机断层扫描(CTA)图像分割模型,用于全自动提取颈动脉。我们探讨了适用于颈动脉分割的下采样次数,并设计了一个多尺度损失函数来解决下采样过程中细节特征的损失。此外,基于 CA-Unet,我们提出了缺血性脑卒中风险预测模型,利用三维 CTA 图像、电子病历和病史预测患者的风险。我们通过对比测试验证了我们的分割模型和预测模型的有效性。我们的方法可以提供可靠的诊断和结果,使患者和医务人员受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CA-UNet Segmentation Makes a Good Ischemic Stroke Risk Prediction.

CA-UNet Segmentation Makes a Good Ischemic Stroke Risk Prediction.

Stroke is still the World's second major factor of death, as well as the third major factor of death and disability. Ischemic stroke is a type of stroke, in which early detection and treatment are the keys to preventing ischemic strokes. However, due to the limitation of privacy protection and labeling difficulties, there are only a few studies on the intelligent automatic diagnosis of stroke or ischemic stroke, and the results are unsatisfactory. Therefore, we collect some data and propose a 3D carotid Computed Tomography Angiography (CTA) image segmentation model called CA-UNet for fully automated extraction of carotid arteries. We explore the number of down-sampling times applicable to carotid segmentation and design a multi-scale loss function to resolve the loss of detailed features during the process of down-sampling. Moreover, based on CA-Unet, we propose an ischemic stroke risk prediction model to predict the risk in patients using their 3D CTA images, electronic medical records, and medical history. We have validated the efficacy of our segmentation model and prediction model through comparison tests. Our method can provide reliable diagnoses and results that benefit patients and medical professionals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信