{"title":"用于前列腺癌靶向的白藜芦醇固体脂质纳米颗粒的开发、评价、药代动力学和生物分布估计。","authors":"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan","doi":"10.1080/02652048.2022.2135785","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>The study was to extend systemic circulation and biological half-life (t<sub>1/2</sub>) of trans-resveratrol (RSV) using solid lipid nanoparticles (RSV-SLN) to improve its anti-cancer potential.</p><p><strong>Methods: </strong>RSV-SLN was prepared by solvent emulsification evaporation technique and proceeded for evaluation like particle size, PDI, zeta potential, <i>in vitro</i> release, <i>in vitro</i> cytotoxicity, cellular internalisation, haemolysis and erythrocyte membrane integrity, platelet aggregation and pharmacokinetic studies in rats. Moreover, cancer cells accumulation of RSV-SLN also needs to be evaluated for proving their targeting ability.</p><p><strong>Result: </strong>Prepared SLN showed 126.85 ± 12.09 nm particle size, -24.23 ± 3.27 mV Zeta potential and 74.67 ± 4.76%. release at 48 h and haemocompatible. The cellular internalisation image showed the SLN reach in a cytoplasm and nucleus of PC3 prostate cells. RSV-SLN exhibited high t<sub>1/2</sub> (8.22 ± 1.36 h) and 7.19 ± 0.69 h MRT (Mean residence time) and lower clearance i.e. 286.42 ± 13.64 mL/min/kg. The bio-distribution of RSV-SLN was found to be extremely high in prostate cells and accumulate 7.56 times greater than that of RSV solution.</p><p><strong>Conclusion: </strong>The developed RSV-SLN can be applied as potential carrier for delivery of drug of chemotherapeutics at an extend systemic circulation and targeting efficiency at tumour site.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"39 6","pages":"563-574"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting.\",\"authors\":\"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan\",\"doi\":\"10.1080/02652048.2022.2135785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aim: </strong>The study was to extend systemic circulation and biological half-life (t<sub>1/2</sub>) of trans-resveratrol (RSV) using solid lipid nanoparticles (RSV-SLN) to improve its anti-cancer potential.</p><p><strong>Methods: </strong>RSV-SLN was prepared by solvent emulsification evaporation technique and proceeded for evaluation like particle size, PDI, zeta potential, <i>in vitro</i> release, <i>in vitro</i> cytotoxicity, cellular internalisation, haemolysis and erythrocyte membrane integrity, platelet aggregation and pharmacokinetic studies in rats. Moreover, cancer cells accumulation of RSV-SLN also needs to be evaluated for proving their targeting ability.</p><p><strong>Result: </strong>Prepared SLN showed 126.85 ± 12.09 nm particle size, -24.23 ± 3.27 mV Zeta potential and 74.67 ± 4.76%. release at 48 h and haemocompatible. The cellular internalisation image showed the SLN reach in a cytoplasm and nucleus of PC3 prostate cells. RSV-SLN exhibited high t<sub>1/2</sub> (8.22 ± 1.36 h) and 7.19 ± 0.69 h MRT (Mean residence time) and lower clearance i.e. 286.42 ± 13.64 mL/min/kg. The bio-distribution of RSV-SLN was found to be extremely high in prostate cells and accumulate 7.56 times greater than that of RSV solution.</p><p><strong>Conclusion: </strong>The developed RSV-SLN can be applied as potential carrier for delivery of drug of chemotherapeutics at an extend systemic circulation and targeting efficiency at tumour site.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\"39 6\",\"pages\":\"563-574\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2022.2135785\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2022.2135785","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting.
Background and aim: The study was to extend systemic circulation and biological half-life (t1/2) of trans-resveratrol (RSV) using solid lipid nanoparticles (RSV-SLN) to improve its anti-cancer potential.
Methods: RSV-SLN was prepared by solvent emulsification evaporation technique and proceeded for evaluation like particle size, PDI, zeta potential, in vitro release, in vitro cytotoxicity, cellular internalisation, haemolysis and erythrocyte membrane integrity, platelet aggregation and pharmacokinetic studies in rats. Moreover, cancer cells accumulation of RSV-SLN also needs to be evaluated for proving their targeting ability.
Result: Prepared SLN showed 126.85 ± 12.09 nm particle size, -24.23 ± 3.27 mV Zeta potential and 74.67 ± 4.76%. release at 48 h and haemocompatible. The cellular internalisation image showed the SLN reach in a cytoplasm and nucleus of PC3 prostate cells. RSV-SLN exhibited high t1/2 (8.22 ± 1.36 h) and 7.19 ± 0.69 h MRT (Mean residence time) and lower clearance i.e. 286.42 ± 13.64 mL/min/kg. The bio-distribution of RSV-SLN was found to be extremely high in prostate cells and accumulate 7.56 times greater than that of RSV solution.
Conclusion: The developed RSV-SLN can be applied as potential carrier for delivery of drug of chemotherapeutics at an extend systemic circulation and targeting efficiency at tumour site.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.