{"title":"TP53和p21 (CDKN1A)多态性与系统性红斑狼疮的风险","authors":"Jacyara Maria Brito Macedo, Amanda Lima Silva, Amanda Chaves Pinto, Leandro Ferreira Lopes Landeira, Elyzabeth Avvad Portari, Cintia Barros Santos-Rebouças, Evandro Mendes Klumb","doi":"10.1186/s42358-023-00320-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The p53 and p21 proteins are important regulators of cell cycle and apoptosis and may contribute to autoimmune diseases, such as systemic lupus erythematosus (SLE). As genetic polymorphisms may cause changes in protein levels and functions, we investigated associations of TP53 and p21 (CDKN1A) polymorphisms (p53 72 G > C-rs1042522; p53 PIN3-rs17878362; p21 31 C > A-rs1801270; p21 70 C > T-rs1059234) with the development of systemic lupus erythematosus (SLE) in a Southeastern Brazilian population.</p><p><strong>Methods: </strong>Genotyping of 353 female volunteers (cases, n = 145; controls, n = 208) was performed by polymerase chain reaction, restriction fragment length polymorphism and/or DNA sequencing. Associations between TP53 and p21 polymorphisms and SLE susceptibility and clinical manifestations of SLE patients were assessed by logistic regression analysis.</p><p><strong>Results: </strong>Protective effect was observed for the genotype combinations p53 PIN3 A1/A1-p21 31 C/A, in the total study population (OR 0.45), and p53 PIN3 A1/A2-p21 31 C/C, in non-white women (OR 0.28). In Whites, p53 72 C-containing (OR 3.06) and p53 PIN3 A2-containing (OR 6.93) genotypes were associated with SLE risk, and higher OR value was observed for the combined genotype p53 72 G/C-p53 PIN3 A1/A2 (OR 9.00). Further, p53 PIN3 A1/A2 genotype was associated with serositis (OR 2.82), while p53 PIN3 A2/A2 and p53 72 C/C genotypes were associated with neurological disorders (OR 4.69 and OR 3.34, respectively).</p><p><strong>Conclusions: </strong>Our findings showed that the TP53 and p21 polymorphisms included in this study may have potential to emerge as SLE susceptibility markers for specific groups of patients. Significant interactions of the TP53 polymorphisms with serositis and neurological disorders were also observed in SLE patients.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TP53 and p21 (CDKN1A) polymorphisms and the risk of systemic lupus erythematosus.\",\"authors\":\"Jacyara Maria Brito Macedo, Amanda Lima Silva, Amanda Chaves Pinto, Leandro Ferreira Lopes Landeira, Elyzabeth Avvad Portari, Cintia Barros Santos-Rebouças, Evandro Mendes Klumb\",\"doi\":\"10.1186/s42358-023-00320-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The p53 and p21 proteins are important regulators of cell cycle and apoptosis and may contribute to autoimmune diseases, such as systemic lupus erythematosus (SLE). As genetic polymorphisms may cause changes in protein levels and functions, we investigated associations of TP53 and p21 (CDKN1A) polymorphisms (p53 72 G > C-rs1042522; p53 PIN3-rs17878362; p21 31 C > A-rs1801270; p21 70 C > T-rs1059234) with the development of systemic lupus erythematosus (SLE) in a Southeastern Brazilian population.</p><p><strong>Methods: </strong>Genotyping of 353 female volunteers (cases, n = 145; controls, n = 208) was performed by polymerase chain reaction, restriction fragment length polymorphism and/or DNA sequencing. Associations between TP53 and p21 polymorphisms and SLE susceptibility and clinical manifestations of SLE patients were assessed by logistic regression analysis.</p><p><strong>Results: </strong>Protective effect was observed for the genotype combinations p53 PIN3 A1/A1-p21 31 C/A, in the total study population (OR 0.45), and p53 PIN3 A1/A2-p21 31 C/C, in non-white women (OR 0.28). In Whites, p53 72 C-containing (OR 3.06) and p53 PIN3 A2-containing (OR 6.93) genotypes were associated with SLE risk, and higher OR value was observed for the combined genotype p53 72 G/C-p53 PIN3 A1/A2 (OR 9.00). Further, p53 PIN3 A1/A2 genotype was associated with serositis (OR 2.82), while p53 PIN3 A2/A2 and p53 72 C/C genotypes were associated with neurological disorders (OR 4.69 and OR 3.34, respectively).</p><p><strong>Conclusions: </strong>Our findings showed that the TP53 and p21 polymorphisms included in this study may have potential to emerge as SLE susceptibility markers for specific groups of patients. Significant interactions of the TP53 polymorphisms with serositis and neurological disorders were also observed in SLE patients.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s42358-023-00320-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s42358-023-00320-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
TP53 and p21 (CDKN1A) polymorphisms and the risk of systemic lupus erythematosus.
Background: The p53 and p21 proteins are important regulators of cell cycle and apoptosis and may contribute to autoimmune diseases, such as systemic lupus erythematosus (SLE). As genetic polymorphisms may cause changes in protein levels and functions, we investigated associations of TP53 and p21 (CDKN1A) polymorphisms (p53 72 G > C-rs1042522; p53 PIN3-rs17878362; p21 31 C > A-rs1801270; p21 70 C > T-rs1059234) with the development of systemic lupus erythematosus (SLE) in a Southeastern Brazilian population.
Methods: Genotyping of 353 female volunteers (cases, n = 145; controls, n = 208) was performed by polymerase chain reaction, restriction fragment length polymorphism and/or DNA sequencing. Associations between TP53 and p21 polymorphisms and SLE susceptibility and clinical manifestations of SLE patients were assessed by logistic regression analysis.
Results: Protective effect was observed for the genotype combinations p53 PIN3 A1/A1-p21 31 C/A, in the total study population (OR 0.45), and p53 PIN3 A1/A2-p21 31 C/C, in non-white women (OR 0.28). In Whites, p53 72 C-containing (OR 3.06) and p53 PIN3 A2-containing (OR 6.93) genotypes were associated with SLE risk, and higher OR value was observed for the combined genotype p53 72 G/C-p53 PIN3 A1/A2 (OR 9.00). Further, p53 PIN3 A1/A2 genotype was associated with serositis (OR 2.82), while p53 PIN3 A2/A2 and p53 72 C/C genotypes were associated with neurological disorders (OR 4.69 and OR 3.34, respectively).
Conclusions: Our findings showed that the TP53 and p21 polymorphisms included in this study may have potential to emerge as SLE susceptibility markers for specific groups of patients. Significant interactions of the TP53 polymorphisms with serositis and neurological disorders were also observed in SLE patients.