Elda A Treviño, Jimmy Shah, Joseph J Pearson, Manu O Platt, Younan Xia, Johnna S Temenoff
{"title":"用于微颗粒制造和释放凝血酶抑制剂的微流体平台","authors":"Elda A Treviño, Jimmy Shah, Joseph J Pearson, Manu O Platt, Younan Xia, Johnna S Temenoff","doi":"10.1089/ten.TEC.2023.0015","DOIUrl":null,"url":null,"abstract":"<p><p>Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days <i>in vitro</i>. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks <i>in vitro</i> (up to ∼13 μg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 8","pages":"361-370"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442676/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Platform for Microparticle Fabrication and Release of a Cathepsin Inhibitor.\",\"authors\":\"Elda A Treviño, Jimmy Shah, Joseph J Pearson, Manu O Platt, Younan Xia, Johnna S Temenoff\",\"doi\":\"10.1089/ten.TEC.2023.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days <i>in vitro</i>. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks <i>in vitro</i> (up to ∼13 μg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"29 8\",\"pages\":\"361-370\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2023.0015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Microfluidic Platform for Microparticle Fabrication and Release of a Cathepsin Inhibitor.
Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days in vitro. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks in vitro (up to ∼13 μg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.