{"title":"从表观遗传学、转录和蛋白质水平对 HIV-1 储库的单细胞多组学理解。","authors":"Michelle Wong, Yulong Wei, Ya-Chi Ho","doi":"10.1097/COH.0000000000000809","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells.</p><p><strong>Recent findings: </strong>Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4+ T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis.</p><p><strong>Summary: </strong>Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.</p>","PeriodicalId":10949,"journal":{"name":"Current Opinion in HIV and AIDS","volume":"18 5","pages":"246-256"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442869/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell multiomic understanding of HIV-1 reservoir at epigenetic, transcriptional, and protein levels.\",\"authors\":\"Michelle Wong, Yulong Wei, Ya-Chi Ho\",\"doi\":\"10.1097/COH.0000000000000809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells.</p><p><strong>Recent findings: </strong>Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4+ T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis.</p><p><strong>Summary: </strong>Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.</p>\",\"PeriodicalId\":10949,\"journal\":{\"name\":\"Current Opinion in HIV and AIDS\",\"volume\":\"18 5\",\"pages\":\"246-256\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442869/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in HIV and AIDS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/COH.0000000000000809\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in HIV and AIDS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/COH.0000000000000809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Single-cell multiomic understanding of HIV-1 reservoir at epigenetic, transcriptional, and protein levels.
Purpose of review: The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells.
Recent findings: Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4+ T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis.
Summary: Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.
期刊介绍:
Published bimonthly and offering a unique and wide ranging perspective on the key developments in the field, each issue of Current Opinion in HIV and AIDS features hand-picked review articles from our team of expert editors. With six disciplines published across the year – including HIV and ageing, a HIV vaccine, and epidemiology – every issue also contains annotated reference detailing the merits of the most important papers.