Petra Sudzinová, Hana Šanderová, Tomáš Koval', Tereza Skálová, Nabajyoti Borah, Jarmila Hnilicová, Tomáš Kouba, Jan Dohnálek, Libor Krásný
{"title":"什么是 Hel:了解细菌的利福平抗药性的最新进展。","authors":"Petra Sudzinová, Hana Šanderová, Tomáš Koval', Tereza Skálová, Nabajyoti Borah, Jarmila Hnilicová, Tomáš Kouba, Jan Dohnálek, Libor Krásný","doi":"10.1093/femsre/fuac051","DOIUrl":null,"url":null,"abstract":"<p><p>Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719064/pdf/","citationCount":"0","resultStr":"{\"title\":\"What the Hel: recent advances in understanding rifampicin resistance in bacteria.\",\"authors\":\"Petra Sudzinová, Hana Šanderová, Tomáš Koval', Tereza Skálová, Nabajyoti Borah, Jarmila Hnilicová, Tomáš Kouba, Jan Dohnálek, Libor Krásný\",\"doi\":\"10.1093/femsre/fuac051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.</p>\",\"PeriodicalId\":12201,\"journal\":{\"name\":\"FEMS microbiology reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsre/fuac051\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuac051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
利福平是一种重要的临床抗生素,它能与细菌 RNA 聚合酶(RNAP)的 DNA/RNA 通道结合并阻断该通道。停滞的、无功能的 RNAP 可被 HelD 蛋白从 DNA 上清除;这对维护基因组的完整性非常重要。最近有报道称,来自高 G+C 放线菌的 HelD 蛋白(称为 HelR)能够将利福平停滞的 RNAP 从 DNA 中分离出来,并提供利福平抗性。这是通过 HelR 蛋白将利福平与 RNAP 分离的能力实现的。本文讨论了 HelR 介导的利福平抗性机制,并概述了 HelD/HelR 在转录循环中的作用。此外,还探讨了低 G+C 韧菌中结构相似的 HelD 蛋白也参与利福平抗性的可能性。最后,HelR参与利福平抗性的发现为类似研究揭示细菌抗生素抗性的新机制提供了一个蓝图。
What the Hel: recent advances in understanding rifampicin resistance in bacteria.
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
期刊介绍:
Title: FEMS Microbiology Reviews
Journal Focus:
Publishes reviews covering all aspects of microbiology not recently surveyed
Reviews topics of current interest
Provides comprehensive, critical, and authoritative coverage
Offers new perspectives and critical, detailed discussions of significant trends
May contain speculative and selective elements
Aimed at both specialists and general readers
Reviews should be framed within the context of general microbiology and biology
Submission Criteria:
Manuscripts should not be unevaluated compilations of literature
Lectures delivered at symposia must review the related field to be acceptable