Wiafe-Kwagyan Michael, Odamtten George Tawia, Kortei Nii Korley
{"title":"P-31侧耳菌废菌堆肥对豇豆生长性能及结瘤的影响","authors":"Wiafe-Kwagyan Michael, Odamtten George Tawia, Kortei Nii Korley","doi":"10.21315/tlsr2022.33.3.8","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the influence of spent mushroom compost (SMC) of <i>Pleurotus eous</i> strain P-31 on the growth, development and soil rhizobial population associated with nodulation of cowpea (<i>Vigna unguiculata</i> Walp.) black-eye variety, under greenhouse conditions at 28 ± 2ºC for 12 weeks. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0%, 5%, 10%, 15%, 20%, 25%, 30%, 100%). Lower concentrations, SMC (5%-25%) promoted plant height, number of leaves, total leaf area, total chlorophyll, chlorophyll a and b as well as dry matter accumulation of shoot and roots after 12 weeks at 28°C-32°C. Soil: SMC concentrations beyond 30% SMC variably depressed the various developmental criteria used in assessing growth. The trend obtained in the assessed parameter were statistically significant (<i>p</i> ≤ 0.05) in decreasing order: 5% SMC < 10% SMC < 15% SMC, < 20% SMC, < 25% SMC, < 30% SMC, < 100% SMC. The cowpea plant efficiently assimilated nitrogen (N<sub>2</sub>) from the soil: compost. Nodule formation by cowpea was commensurate with increasing percentage of spent compost was highest in 5% SMC (89/plant) and declined with increasing proportion of SMC: soil mixture up to 25% but nodulation of cowpea plant was completely depressed in the absence of soil (100% SMC) pots. The Nodule Index data showed that the best nodule size and weight were formed by cowpea growing in medium containing 5% SMC (18) and 10% SMC (12) and thereafter declined. The nodules were red to pinkish in colour epitomising leghaemoglobin which could initiate nodulation and N<sub>2</sub> fixation in soil. This study has shown that 5% SMC-20% SMC could provide favourable conditions in soil as a biofertiliser to improve the growth, development and nodulation of cowpea.</p>","PeriodicalId":23477,"journal":{"name":"Tropical life sciences research","volume":"33 3","pages":"129-149"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747103/pdf/","citationCount":"1","resultStr":"{\"title\":\"Effect of Spent Mushroom Compost of <i>Pleurotus eous</i> Strain P-31 on Growth Performance and Nodulation of Cowpea (<i>Vigna unguiculata</i> Walp.).\",\"authors\":\"Wiafe-Kwagyan Michael, Odamtten George Tawia, Kortei Nii Korley\",\"doi\":\"10.21315/tlsr2022.33.3.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the influence of spent mushroom compost (SMC) of <i>Pleurotus eous</i> strain P-31 on the growth, development and soil rhizobial population associated with nodulation of cowpea (<i>Vigna unguiculata</i> Walp.) black-eye variety, under greenhouse conditions at 28 ± 2ºC for 12 weeks. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0%, 5%, 10%, 15%, 20%, 25%, 30%, 100%). Lower concentrations, SMC (5%-25%) promoted plant height, number of leaves, total leaf area, total chlorophyll, chlorophyll a and b as well as dry matter accumulation of shoot and roots after 12 weeks at 28°C-32°C. Soil: SMC concentrations beyond 30% SMC variably depressed the various developmental criteria used in assessing growth. The trend obtained in the assessed parameter were statistically significant (<i>p</i> ≤ 0.05) in decreasing order: 5% SMC < 10% SMC < 15% SMC, < 20% SMC, < 25% SMC, < 30% SMC, < 100% SMC. The cowpea plant efficiently assimilated nitrogen (N<sub>2</sub>) from the soil: compost. Nodule formation by cowpea was commensurate with increasing percentage of spent compost was highest in 5% SMC (89/plant) and declined with increasing proportion of SMC: soil mixture up to 25% but nodulation of cowpea plant was completely depressed in the absence of soil (100% SMC) pots. The Nodule Index data showed that the best nodule size and weight were formed by cowpea growing in medium containing 5% SMC (18) and 10% SMC (12) and thereafter declined. The nodules were red to pinkish in colour epitomising leghaemoglobin which could initiate nodulation and N<sub>2</sub> fixation in soil. This study has shown that 5% SMC-20% SMC could provide favourable conditions in soil as a biofertiliser to improve the growth, development and nodulation of cowpea.</p>\",\"PeriodicalId\":23477,\"journal\":{\"name\":\"Tropical life sciences research\",\"volume\":\"33 3\",\"pages\":\"129-149\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747103/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical life sciences research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/tlsr2022.33.3.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical life sciences research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/tlsr2022.33.3.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Effect of Spent Mushroom Compost of Pleurotus eous Strain P-31 on Growth Performance and Nodulation of Cowpea (Vigna unguiculata Walp.).
This study investigated the influence of spent mushroom compost (SMC) of Pleurotus eous strain P-31 on the growth, development and soil rhizobial population associated with nodulation of cowpea (Vigna unguiculata Walp.) black-eye variety, under greenhouse conditions at 28 ± 2ºC for 12 weeks. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0%, 5%, 10%, 15%, 20%, 25%, 30%, 100%). Lower concentrations, SMC (5%-25%) promoted plant height, number of leaves, total leaf area, total chlorophyll, chlorophyll a and b as well as dry matter accumulation of shoot and roots after 12 weeks at 28°C-32°C. Soil: SMC concentrations beyond 30% SMC variably depressed the various developmental criteria used in assessing growth. The trend obtained in the assessed parameter were statistically significant (p ≤ 0.05) in decreasing order: 5% SMC < 10% SMC < 15% SMC, < 20% SMC, < 25% SMC, < 30% SMC, < 100% SMC. The cowpea plant efficiently assimilated nitrogen (N2) from the soil: compost. Nodule formation by cowpea was commensurate with increasing percentage of spent compost was highest in 5% SMC (89/plant) and declined with increasing proportion of SMC: soil mixture up to 25% but nodulation of cowpea plant was completely depressed in the absence of soil (100% SMC) pots. The Nodule Index data showed that the best nodule size and weight were formed by cowpea growing in medium containing 5% SMC (18) and 10% SMC (12) and thereafter declined. The nodules were red to pinkish in colour epitomising leghaemoglobin which could initiate nodulation and N2 fixation in soil. This study has shown that 5% SMC-20% SMC could provide favourable conditions in soil as a biofertiliser to improve the growth, development and nodulation of cowpea.
期刊介绍:
Tropical Life Sciences Research (TLSR) formerly known as Journal of Bioscience seeks to publish relevant ideas and knowledge addressing vital life sciences issues in the tropical region. The Journal’s scope is interdisciplinary in nature and covers any aspects related to issues on life sciences especially from the field of biochemistry, microbiology, biotechnology and animal, plant, environmental, biomedical and pharmaceutical sciences. TLSR practices double blind peer review system to ensure and maintain the good quality of articles published in this journal. Two issues are published annually in printed and electronic form. TLSR also accepts review articles, experimental papers and short communications. The Chief Editor would like to invite researchers to use this journal as a mean to rapidly promote their research findings.