{"title":"记忆:突触还是细胞,这就是问题所在。","authors":"Yuri I Arshavsky","doi":"10.1177/10738584221086488","DOIUrl":null,"url":null,"abstract":"<p><p>According to the commonly accepted opinion, memory engrams are formed and stored at the level of neural networks due to a change in the strength of synaptic connections between neurons. This hypothesis of synaptic plasticity (HSP), formulated by Donald Hebb in the 1940s, continues to dominate the directions of experimental studies and the interpretations of experimental results in the field. The universal acceptance of the HSP has transformed it from a hypothesis into an incontrovertible theory. In this article, I show that the entire body of experimental and clinical data obtained in studies of long-term memory in mammals and humans is inconsistent with the HSP. Instead, these data suggest that long-term memory is formed and stored at the intracellular level where it is reliably protected from ongoing synaptic activity, including pathological epileptic activity. It seems that the generally accepted HSP became a serious obstacle to understanding the mechanisms of memory and that progress in this field requires rethinking this doctrine and shifting experimental efforts toward exploring the intracellular mechanisms.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 5","pages":"538-553"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Memory: Synaptic or Cellular, That Is the Question.\",\"authors\":\"Yuri I Arshavsky\",\"doi\":\"10.1177/10738584221086488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the commonly accepted opinion, memory engrams are formed and stored at the level of neural networks due to a change in the strength of synaptic connections between neurons. This hypothesis of synaptic plasticity (HSP), formulated by Donald Hebb in the 1940s, continues to dominate the directions of experimental studies and the interpretations of experimental results in the field. The universal acceptance of the HSP has transformed it from a hypothesis into an incontrovertible theory. In this article, I show that the entire body of experimental and clinical data obtained in studies of long-term memory in mammals and humans is inconsistent with the HSP. Instead, these data suggest that long-term memory is formed and stored at the intracellular level where it is reliably protected from ongoing synaptic activity, including pathological epileptic activity. It seems that the generally accepted HSP became a serious obstacle to understanding the mechanisms of memory and that progress in this field requires rethinking this doctrine and shifting experimental efforts toward exploring the intracellular mechanisms.</p>\",\"PeriodicalId\":49753,\"journal\":{\"name\":\"Neuroscientist\",\"volume\":\"29 5\",\"pages\":\"538-553\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscientist\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10738584221086488\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584221086488","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Memory: Synaptic or Cellular, That Is the Question.
According to the commonly accepted opinion, memory engrams are formed and stored at the level of neural networks due to a change in the strength of synaptic connections between neurons. This hypothesis of synaptic plasticity (HSP), formulated by Donald Hebb in the 1940s, continues to dominate the directions of experimental studies and the interpretations of experimental results in the field. The universal acceptance of the HSP has transformed it from a hypothesis into an incontrovertible theory. In this article, I show that the entire body of experimental and clinical data obtained in studies of long-term memory in mammals and humans is inconsistent with the HSP. Instead, these data suggest that long-term memory is formed and stored at the intracellular level where it is reliably protected from ongoing synaptic activity, including pathological epileptic activity. It seems that the generally accepted HSP became a serious obstacle to understanding the mechanisms of memory and that progress in this field requires rethinking this doctrine and shifting experimental efforts toward exploring the intracellular mechanisms.
期刊介绍:
Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.