{"title":"大脑类器官如何改变神经科学。","authors":"Zara Abrams","doi":"10.1109/MPULS.2023.3294102","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring just a millimeter or two in diameter, brain organoids are a far cry from a fully functioning human brain. But these miniature tissues, typically derived from stem cells, are increasingly able to mimic the structure and function of our most complex organ, unlocking exciting possibilities for neuroscience, artificial intelligence, and beyond.</p>","PeriodicalId":49065,"journal":{"name":"IEEE Pulse","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Brain Organoids Are Revolutionizing Neuroscience.\",\"authors\":\"Zara Abrams\",\"doi\":\"10.1109/MPULS.2023.3294102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring just a millimeter or two in diameter, brain organoids are a far cry from a fully functioning human brain. But these miniature tissues, typically derived from stem cells, are increasingly able to mimic the structure and function of our most complex organ, unlocking exciting possibilities for neuroscience, artificial intelligence, and beyond.</p>\",\"PeriodicalId\":49065,\"journal\":{\"name\":\"IEEE Pulse\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Pulse\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/MPULS.2023.3294102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pulse","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MPULS.2023.3294102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
How Brain Organoids Are Revolutionizing Neuroscience.
Measuring just a millimeter or two in diameter, brain organoids are a far cry from a fully functioning human brain. But these miniature tissues, typically derived from stem cells, are increasingly able to mimic the structure and function of our most complex organ, unlocking exciting possibilities for neuroscience, artificial intelligence, and beyond.
期刊介绍:
IEEE Pulse covers both general and technical articles on current technologies and methods used in biomedical and clinical engineering; societal implications of medical technologies; current news items; book reviews; patent descriptions; and correspondence. Special interest departments, students, law, clinical engineering, ethics, new products, society news, historical features and government.