基于外膜囊泡的鼻内疫苗。

IF 6.6 2区 医学 Q1 IMMUNOLOGY
Peter Van der Ley, Virgil EJC Schijns
{"title":"基于外膜囊泡的鼻内疫苗。","authors":"Peter Van der Ley,&nbsp;Virgil EJC Schijns","doi":"10.1016/j.coi.2023.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system.</p><p>While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.</p></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outer membrane vesicle-based intranasal vaccines\",\"authors\":\"Peter Van der Ley,&nbsp;Virgil EJC Schijns\",\"doi\":\"10.1016/j.coi.2023.102376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system.</p><p>While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.</p></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095279152300095X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095279152300095X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

通过粘膜途径递送疫苗被认为是对抗通过粘膜组织(包括口腔、鼻腔、肺部、肠道和泌尿生殖道表面)进入的传染病的最有效免疫模式。粘膜疫苗不仅诱导局部免疫效应元件,如分泌性免疫球蛋白A(IgA)到达粘膜管腔部位,还诱导全身免疫。此外,粘膜疫苗可能触发远处粘膜组织的免疫,因为引发的抗原特异性免疫细胞通过共同的粘膜免疫系统向局部和远处粘膜组织归巢。虽然大多数获得许可的肌肉内疫苗只能诱导系统免疫,但下一代粘膜疫苗可能会通过引发保护性粘膜免疫反应来阻断感染和/或传播,从而优于胃肠外疫苗接种策略。尤其是针对鼻腔相关淋巴组织的鼻腔疫苗接种途径,对局部和远处粘膜免疫具有吸引力。在许多研究中,细菌外膜囊泡(OMV)已被证明是同源菌株的疫苗平台,也是非细菌疾病(包括病毒、寄生虫和癌症)异源抗原的抗原递送平台。它们的应用也已扩展到粘膜递送。在这里,我们将总结(工程化)OMV作为粘膜,特别是鼻内递送的疫苗平台的特点和临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outer membrane vesicle-based intranasal vaccines

Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system.

While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
1.40%
发文量
94
审稿时长
67 days
期刊介绍: Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students. Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信