{"title":"德国河流稳定同位素格局的尺度、连续性和网络状态。","authors":"Paul Koeniger, Christine Stumpp, Axel Schmidt","doi":"10.1080/10256016.2022.2127702","DOIUrl":null,"url":null,"abstract":"<p><p>In Germany, river monitoring for tritium started in the early 1970s. Today this monitoring network consists of 50 stations and includes stable isotopes. The stable isotope time series to the end of 2021 are at least four years and for some stations up to 30 years long. Daily river water samples were collected during an extraordinary dry season from October 2018 until end of January 2019 from six selected stations of the Rhine and five stations of the Elbe basin. The most dominating stable isotope effects in river water are the seasonal and altitude effects, but also a continental effect is visible. The isotopes indicate snow and ice melt contributions in the Rhine and Danube during the summer months and a consecutive dilution of these signals by mixing with tributary rivers. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 surprisingly do not exhibit extreme changes but rather trends of enhanced groundwater contribution. Long-term continual data across scales are important for comparing and identifying hydrological processes in German river basins of different size and mean catchment altitudes, and highlight the benefits of a co-organized national network.</p>","PeriodicalId":14597,"journal":{"name":"Isotopes in Environmental and Health Studies","volume":"58 4-6","pages":"363-379"},"PeriodicalIF":1.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stable isotope patterns of German rivers with aspects on scales, continuity and network status.\",\"authors\":\"Paul Koeniger, Christine Stumpp, Axel Schmidt\",\"doi\":\"10.1080/10256016.2022.2127702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Germany, river monitoring for tritium started in the early 1970s. Today this monitoring network consists of 50 stations and includes stable isotopes. The stable isotope time series to the end of 2021 are at least four years and for some stations up to 30 years long. Daily river water samples were collected during an extraordinary dry season from October 2018 until end of January 2019 from six selected stations of the Rhine and five stations of the Elbe basin. The most dominating stable isotope effects in river water are the seasonal and altitude effects, but also a continental effect is visible. The isotopes indicate snow and ice melt contributions in the Rhine and Danube during the summer months and a consecutive dilution of these signals by mixing with tributary rivers. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 surprisingly do not exhibit extreme changes but rather trends of enhanced groundwater contribution. Long-term continual data across scales are important for comparing and identifying hydrological processes in German river basins of different size and mean catchment altitudes, and highlight the benefits of a co-organized national network.</p>\",\"PeriodicalId\":14597,\"journal\":{\"name\":\"Isotopes in Environmental and Health Studies\",\"volume\":\"58 4-6\",\"pages\":\"363-379\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Isotopes in Environmental and Health Studies\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10256016.2022.2127702\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isotopes in Environmental and Health Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2022.2127702","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Stable isotope patterns of German rivers with aspects on scales, continuity and network status.
In Germany, river monitoring for tritium started in the early 1970s. Today this monitoring network consists of 50 stations and includes stable isotopes. The stable isotope time series to the end of 2021 are at least four years and for some stations up to 30 years long. Daily river water samples were collected during an extraordinary dry season from October 2018 until end of January 2019 from six selected stations of the Rhine and five stations of the Elbe basin. The most dominating stable isotope effects in river water are the seasonal and altitude effects, but also a continental effect is visible. The isotopes indicate snow and ice melt contributions in the Rhine and Danube during the summer months and a consecutive dilution of these signals by mixing with tributary rivers. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 surprisingly do not exhibit extreme changes but rather trends of enhanced groundwater contribution. Long-term continual data across scales are important for comparing and identifying hydrological processes in German river basins of different size and mean catchment altitudes, and highlight the benefits of a co-organized national network.
期刊介绍:
Isotopes in Environmental and Health Studies provides a unique platform for stable isotope studies in geological and life sciences, with emphasis on ecology. The international journal publishes original research papers, review articles, short communications, and book reviews relating to the following topics:
-variations in natural isotope abundance (isotope ecology, isotope biochemistry, isotope hydrology, isotope geology)
-stable isotope tracer techniques to follow the fate of certain substances in soil, water, plants, animals and in the human body
-isotope effects and tracer theory linked with mathematical modelling
-isotope measurement methods and equipment with respect to environmental and health research
-diagnostic stable isotope application in medicine and in health studies
-environmental sources of ionizing radiation and its effects on all living matter