Seoyeon Lee, Luye An, Paul D. Soloway, Andrew C. White
{"title":"黑素细胞干细胞活化过程中染色质可及性的动态调节。","authors":"Seoyeon Lee, Luye An, Paul D. Soloway, Andrew C. White","doi":"10.1111/pcmr.13112","DOIUrl":null,"url":null,"abstract":"<p>Melanocyte stem cells (McSCs) of the hair follicle are necessary for hair pigmentation and can serve as melanoma cells of origin when harboring cancer-driving mutations. McSCs can be released from quiescence, activated, and undergo differentiation into pigment-producing melanocytes during the hair cycle or due to environmental stimuli, such as ultraviolet-B (UVB) exposure. However, our current understanding of the mechanisms regulating McSC stemness, activation, and differentiation remains limited. Here, to capture the differing possible states in which murine McSCs can exist, we sorted melanocyte nuclei from quiescent (telogen) skin, skin actively producing hair shafts (anagen), and skin exposed to UVB. With these sorted nuclei, we then utilized single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and characterized three melanocyte lineages: quiescent McSCs (qMcSCs), activated McSCs (aMcSCs), and differentiated melanocytes (dMCs) that co-exist in all three skin conditions. Furthermore, we successfully identified differentially accessible genes and enriched transcription factor binding motifs for each melanocyte lineage. Our findings reveal potential gene regulators that determine these melanocyte cell states and provide new insights into how aMcSC chromatin states are regulated differently under divergent intrinsic and extrinsic cues. We also provide a publicly available online tool with a user-friendly interface to explore this comprehensive dataset, which will provide a resource for further studies on McSC regulation upon natural or UVB-mediated stem cell activation.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"36 6","pages":"531-541"},"PeriodicalIF":3.9000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic regulation of chromatin accessibility during melanocyte stem cell activation\",\"authors\":\"Seoyeon Lee, Luye An, Paul D. Soloway, Andrew C. White\",\"doi\":\"10.1111/pcmr.13112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melanocyte stem cells (McSCs) of the hair follicle are necessary for hair pigmentation and can serve as melanoma cells of origin when harboring cancer-driving mutations. McSCs can be released from quiescence, activated, and undergo differentiation into pigment-producing melanocytes during the hair cycle or due to environmental stimuli, such as ultraviolet-B (UVB) exposure. However, our current understanding of the mechanisms regulating McSC stemness, activation, and differentiation remains limited. Here, to capture the differing possible states in which murine McSCs can exist, we sorted melanocyte nuclei from quiescent (telogen) skin, skin actively producing hair shafts (anagen), and skin exposed to UVB. With these sorted nuclei, we then utilized single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and characterized three melanocyte lineages: quiescent McSCs (qMcSCs), activated McSCs (aMcSCs), and differentiated melanocytes (dMCs) that co-exist in all three skin conditions. Furthermore, we successfully identified differentially accessible genes and enriched transcription factor binding motifs for each melanocyte lineage. Our findings reveal potential gene regulators that determine these melanocyte cell states and provide new insights into how aMcSC chromatin states are regulated differently under divergent intrinsic and extrinsic cues. We also provide a publicly available online tool with a user-friendly interface to explore this comprehensive dataset, which will provide a resource for further studies on McSC regulation upon natural or UVB-mediated stem cell activation.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"36 6\",\"pages\":\"531-541\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13112\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dynamic regulation of chromatin accessibility during melanocyte stem cell activation
Melanocyte stem cells (McSCs) of the hair follicle are necessary for hair pigmentation and can serve as melanoma cells of origin when harboring cancer-driving mutations. McSCs can be released from quiescence, activated, and undergo differentiation into pigment-producing melanocytes during the hair cycle or due to environmental stimuli, such as ultraviolet-B (UVB) exposure. However, our current understanding of the mechanisms regulating McSC stemness, activation, and differentiation remains limited. Here, to capture the differing possible states in which murine McSCs can exist, we sorted melanocyte nuclei from quiescent (telogen) skin, skin actively producing hair shafts (anagen), and skin exposed to UVB. With these sorted nuclei, we then utilized single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and characterized three melanocyte lineages: quiescent McSCs (qMcSCs), activated McSCs (aMcSCs), and differentiated melanocytes (dMCs) that co-exist in all three skin conditions. Furthermore, we successfully identified differentially accessible genes and enriched transcription factor binding motifs for each melanocyte lineage. Our findings reveal potential gene regulators that determine these melanocyte cell states and provide new insights into how aMcSC chromatin states are regulated differently under divergent intrinsic and extrinsic cues. We also provide a publicly available online tool with a user-friendly interface to explore this comprehensive dataset, which will provide a resource for further studies on McSC regulation upon natural or UVB-mediated stem cell activation.
期刊介绍:
Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords
Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders