{"title":"固体中的高次谐波产生:粒子和波的视角。","authors":"Liang Li, Pengfei Lan, Xiaosong Zhu, Peixiang Lu","doi":"10.1088/1361-6633/acf144","DOIUrl":null,"url":null,"abstract":"<p><p>High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are accessible. The fundamental physical pictures of HHG are always explained by the laser-induced recollision of particle-like electron motion, which lay the foundation of attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect the extension of attosecond spectroscopy to the condensed matter if a description capable of resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have been proposed to understand the underlying physics of solid HHG. Here, we revisit the recollision picture in solid HHG and show some challenges of current particle-perspective methods, and present the recently developed wave-perspective Huygens-Fresnel picture for understanding dynamical systems within the ambit of strong-field physics.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High harmonic generation in solids: particle and wave perspectives.\",\"authors\":\"Liang Li, Pengfei Lan, Xiaosong Zhu, Peixiang Lu\",\"doi\":\"10.1088/1361-6633/acf144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are accessible. The fundamental physical pictures of HHG are always explained by the laser-induced recollision of particle-like electron motion, which lay the foundation of attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect the extension of attosecond spectroscopy to the condensed matter if a description capable of resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have been proposed to understand the underlying physics of solid HHG. Here, we revisit the recollision picture in solid HHG and show some challenges of current particle-perspective methods, and present the recently developed wave-perspective Huygens-Fresnel picture for understanding dynamical systems within the ambit of strong-field physics.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/acf144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/acf144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High harmonic generation in solids: particle and wave perspectives.
High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are accessible. The fundamental physical pictures of HHG are always explained by the laser-induced recollision of particle-like electron motion, which lay the foundation of attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect the extension of attosecond spectroscopy to the condensed matter if a description capable of resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have been proposed to understand the underlying physics of solid HHG. Here, we revisit the recollision picture in solid HHG and show some challenges of current particle-perspective methods, and present the recently developed wave-perspective Huygens-Fresnel picture for understanding dynamical systems within the ambit of strong-field physics.