Jean-Marc Kyalamakasa Kaumbu, Godar Sene, Franck Stefani, Damase P Khasa
{"title":"苗柏林红木丛枝菌根真菌群落特征研究。","authors":"Jean-Marc Kyalamakasa Kaumbu, Godar Sene, Franck Stefani, Damase P Khasa","doi":"10.1007/s00572-023-01115-7","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the dynamics of arbuscular mycorrhizal fungi (AMF) in response to land use change is important for the restoration of degraded forests. Here, we investigated the AMF community composition in the roots of Pterocarpus tinctorius sampled from agricultural and forest fallow soils rich in aluminum and iron. By sequencing the large subunit region of the rRNA gene, we identified a total of 30 operational taxonomic units (OTUs) in 33 root samples. These OTUs belonged to the genera Rhizophagus, Dominikia, Glomus, Sclerocystis, and Scutellospora. The majority of these OTUs did not closely match any known AMF species. We found that AMF species richness was significantly influenced by soil properties and overall tree density. Acidic soils with high levels of aluminum and iron had a low mean AMF species richness of 3.2. Indicator species analyses revealed several AMF OTUs associated with base saturation (4 OTUs), high aluminum (3 OTUs), and iron (2 OTUs). OTUs positively correlated with acidity (1 OTU), iron, and available phosphorus (2 OTUs) were assigned to the genus Rhizophagus, suggesting their tolerance to aluminum and iron. The results highlight the potential of leguminous trees in tropical dry forests as a reservoir of unknown AMF species. The baseline data obtained in this study opens new avenues for future studies, including the use of indigenous AMF-based biofertilizers to implement ecological revegetation strategies and improve land use.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"33 4","pages":"277-288"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the arbuscular mycorrhizal fungal community associated with rosewood in threatened Miombo forests.\",\"authors\":\"Jean-Marc Kyalamakasa Kaumbu, Godar Sene, Franck Stefani, Damase P Khasa\",\"doi\":\"10.1007/s00572-023-01115-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the dynamics of arbuscular mycorrhizal fungi (AMF) in response to land use change is important for the restoration of degraded forests. Here, we investigated the AMF community composition in the roots of Pterocarpus tinctorius sampled from agricultural and forest fallow soils rich in aluminum and iron. By sequencing the large subunit region of the rRNA gene, we identified a total of 30 operational taxonomic units (OTUs) in 33 root samples. These OTUs belonged to the genera Rhizophagus, Dominikia, Glomus, Sclerocystis, and Scutellospora. The majority of these OTUs did not closely match any known AMF species. We found that AMF species richness was significantly influenced by soil properties and overall tree density. Acidic soils with high levels of aluminum and iron had a low mean AMF species richness of 3.2. Indicator species analyses revealed several AMF OTUs associated with base saturation (4 OTUs), high aluminum (3 OTUs), and iron (2 OTUs). OTUs positively correlated with acidity (1 OTU), iron, and available phosphorus (2 OTUs) were assigned to the genus Rhizophagus, suggesting their tolerance to aluminum and iron. The results highlight the potential of leguminous trees in tropical dry forests as a reservoir of unknown AMF species. The baseline data obtained in this study opens new avenues for future studies, including the use of indigenous AMF-based biofertilizers to implement ecological revegetation strategies and improve land use.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"33 4\",\"pages\":\"277-288\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-023-01115-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-023-01115-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Characterization of the arbuscular mycorrhizal fungal community associated with rosewood in threatened Miombo forests.
Understanding the dynamics of arbuscular mycorrhizal fungi (AMF) in response to land use change is important for the restoration of degraded forests. Here, we investigated the AMF community composition in the roots of Pterocarpus tinctorius sampled from agricultural and forest fallow soils rich in aluminum and iron. By sequencing the large subunit region of the rRNA gene, we identified a total of 30 operational taxonomic units (OTUs) in 33 root samples. These OTUs belonged to the genera Rhizophagus, Dominikia, Glomus, Sclerocystis, and Scutellospora. The majority of these OTUs did not closely match any known AMF species. We found that AMF species richness was significantly influenced by soil properties and overall tree density. Acidic soils with high levels of aluminum and iron had a low mean AMF species richness of 3.2. Indicator species analyses revealed several AMF OTUs associated with base saturation (4 OTUs), high aluminum (3 OTUs), and iron (2 OTUs). OTUs positively correlated with acidity (1 OTU), iron, and available phosphorus (2 OTUs) were assigned to the genus Rhizophagus, suggesting their tolerance to aluminum and iron. The results highlight the potential of leguminous trees in tropical dry forests as a reservoir of unknown AMF species. The baseline data obtained in this study opens new avenues for future studies, including the use of indigenous AMF-based biofertilizers to implement ecological revegetation strategies and improve land use.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.