Usman Ali , Shaoping Lu , Tarig Fadlalla , Sidra Iqbal , Hong Yue , Bao Yang , Yueyun Hong , Xuemin Wang , Liang Guo
{"title":"磷脂酶及其水解产物在植物生长发育和逆境响应中的作用","authors":"Usman Ali , Shaoping Lu , Tarig Fadlalla , Sidra Iqbal , Hong Yue , Bao Yang , Yueyun Hong , Xuemin Wang , Liang Guo","doi":"10.1016/j.plipres.2022.101158","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. </span>Phospholipases<span><span><span> hydrolyze </span>membrane lipids<span> to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, </span></span>phosphatidic acid<span><span>, inositol phosphates, lysophopsholipids, and </span>free fatty acids, act as second messengers, playing vital roles in </span></span></span>signal transduction<span> during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.</span></p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"86 ","pages":"Article 101158"},"PeriodicalIF":14.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses\",\"authors\":\"Usman Ali , Shaoping Lu , Tarig Fadlalla , Sidra Iqbal , Hong Yue , Bao Yang , Yueyun Hong , Xuemin Wang , Liang Guo\",\"doi\":\"10.1016/j.plipres.2022.101158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. </span>Phospholipases<span><span><span> hydrolyze </span>membrane lipids<span> to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, </span></span>phosphatidic acid<span><span>, inositol phosphates, lysophopsholipids, and </span>free fatty acids, act as second messengers, playing vital roles in </span></span></span>signal transduction<span> during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.</span></p></div>\",\"PeriodicalId\":20650,\"journal\":{\"name\":\"Progress in lipid research\",\"volume\":\"86 \",\"pages\":\"Article 101158\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in lipid research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0163782722000133\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782722000133","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.