半个世纪对细胞生命逻辑的定义。

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY
Lucy Shapiro
{"title":"半个世纪对细胞生命逻辑的定义。","authors":"Lucy Shapiro","doi":"10.1146/annurev-genet-071719-021436","DOIUrl":null,"url":null,"abstract":"<p><p>Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. <i>Caulobacter</i>'s interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"1-15"},"PeriodicalIF":8.7000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Half Century Defining the Logic of Cellular Life.\",\"authors\":\"Lucy Shapiro\",\"doi\":\"10.1146/annurev-genet-071719-021436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. <i>Caulobacter</i>'s interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.</p>\",\"PeriodicalId\":8035,\"journal\":{\"name\":\"Annual review of genetics\",\"volume\":\"56 \",\"pages\":\"1-15\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genet-071719-021436\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-071719-021436","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

五十多年来,我一直在研究控制和整合细胞功能的逻辑如何被构建到活细胞的动态结构中。我与一系列非常有才华的学生和博士后一起工作,我们发现细菌细胞是由一个整合的遗传电路控制的,其中转录和翻译控制与关键调节和形态蛋白的三维部署交织在一起。Caulobacter相互关联的遗传调控网络包括调控细胞周期中特定时间表达的一系列基因的逻辑,以及与染色体复制和细胞质分裂同步推进核心循环回路的机制。在这里,我追溯了我从纽约市艺术学生到斯坦福大学发育生物学家的历程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Half Century Defining the Logic of Cellular Life.

Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. Caulobacter's interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信