{"title":"具有相依截尾的多变量纵向和生存数据的贝叶斯半参数联合模型。","authors":"An-Min Tang, Nian-Sheng Tang, Dalei Yu","doi":"10.1007/s10985-023-09608-5","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a novel class of semiparametric joint models for multivariate longitudinal and survival data with dependent censoring. In these models, unknown-fashion cumulative baseline hazard functions are fitted by a novel class of penalized-splines (P-splines) with linear constraints. The dependence between the failure time of interest and censoring time is accommodated by a normal transformation model, where both nonparametric marginal survival function and censoring function are transformed to standard normal random variables with bivariate normal joint distribution. Based on a hybrid algorithm together with the Metropolis-Hastings algorithm within the Gibbs sampler, we propose a feasible Bayesian method to simultaneously estimate unknown parameters of interest, and to fit baseline survival and censoring functions. Intensive simulation studies are conducted to assess the performance of the proposed method. The use of the proposed method is also illustrated in the analysis of a data set from the International Breast Cancer Study Group.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring.\",\"authors\":\"An-Min Tang, Nian-Sheng Tang, Dalei Yu\",\"doi\":\"10.1007/s10985-023-09608-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider a novel class of semiparametric joint models for multivariate longitudinal and survival data with dependent censoring. In these models, unknown-fashion cumulative baseline hazard functions are fitted by a novel class of penalized-splines (P-splines) with linear constraints. The dependence between the failure time of interest and censoring time is accommodated by a normal transformation model, where both nonparametric marginal survival function and censoring function are transformed to standard normal random variables with bivariate normal joint distribution. Based on a hybrid algorithm together with the Metropolis-Hastings algorithm within the Gibbs sampler, we propose a feasible Bayesian method to simultaneously estimate unknown parameters of interest, and to fit baseline survival and censoring functions. Intensive simulation studies are conducted to assess the performance of the proposed method. The use of the proposed method is also illustrated in the analysis of a data set from the International Breast Cancer Study Group.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09608-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09608-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring.
We consider a novel class of semiparametric joint models for multivariate longitudinal and survival data with dependent censoring. In these models, unknown-fashion cumulative baseline hazard functions are fitted by a novel class of penalized-splines (P-splines) with linear constraints. The dependence between the failure time of interest and censoring time is accommodated by a normal transformation model, where both nonparametric marginal survival function and censoring function are transformed to standard normal random variables with bivariate normal joint distribution. Based on a hybrid algorithm together with the Metropolis-Hastings algorithm within the Gibbs sampler, we propose a feasible Bayesian method to simultaneously estimate unknown parameters of interest, and to fit baseline survival and censoring functions. Intensive simulation studies are conducted to assess the performance of the proposed method. The use of the proposed method is also illustrated in the analysis of a data set from the International Breast Cancer Study Group.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.