M Teresa Garcia-Lopez, Esteban Meca, Ramon Jaime, Ryan D Puckett, Themis J Michailides, Juan Moral
{"title":"生物控制剂黄曲霉 AF36 在田间条件下的孢子繁殖和传播。","authors":"M Teresa Garcia-Lopez, Esteban Meca, Ramon Jaime, Ryan D Puckett, Themis J Michailides, Juan Moral","doi":"10.1094/PHYTO-06-23-0200-KC","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxins are carcinogens produced by the fungi <i>Aspergillus flavus</i> and <i>A. parasiticus</i> that contaminate pistachio crops. International markets reject pistachio when aflatoxins exceed permitted maximum levels. Releasing the atoxigenic strain AF36 of <i>A. flavus</i> is the leading aflatoxin pre-harvest control method. The product AF36 Prevail, sorghum grains coated with AF36 propagules, has been used in California since 2017. However, a high percentage of grains of the Prevail fail to sporulate in orchards. Here, the effect of soil moisture on the percentage of AF36 product grains sporulating (SG) and the quantity of spores per grain using a sporulation index (SI) was determined. Under controlled conditions, SG was higher than 85% when soil moisture was 13% or more, and SI increased with increasing soil moisture from 8.4 to 21%. The highest AF36 sporulation occurred near the micro-sprinklers when the grains were not impacted by the irrigation water drops. Arthropod predation was responsible for lost product grains, which was more pronounced in non-tilled soil than in tilled soil. Dispersal of the AF36 spores decreased markedly with the height and distance from the inoculum source, following a pattern of diffusion equations. However, AF36 spores easily reached canopies of pistachios located 10 m from the inoculum source. Our results indicate that AF36 Prevail should be applied close to the irrigation line in the moist soil area but avoiding the areas where excess irrigation causes water accumulation. The biocontrol of aflatoxins in California's pistachio production areas was optimized by improving the field realization of the biological control agent.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"1118-1125"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sporulation and Dispersal of the Biological Control Agent <i>Aspergillus flavus</i> AF36 Under Field Conditions.\",\"authors\":\"M Teresa Garcia-Lopez, Esteban Meca, Ramon Jaime, Ryan D Puckett, Themis J Michailides, Juan Moral\",\"doi\":\"10.1094/PHYTO-06-23-0200-KC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxins are carcinogens produced by the fungi <i>Aspergillus flavus</i> and <i>A. parasiticus</i> that contaminate pistachio crops. International markets reject pistachio when aflatoxins exceed permitted maximum levels. Releasing the atoxigenic strain AF36 of <i>A. flavus</i> is the leading aflatoxin pre-harvest control method. The product AF36 Prevail, sorghum grains coated with AF36 propagules, has been used in California since 2017. However, a high percentage of grains of the Prevail fail to sporulate in orchards. Here, the effect of soil moisture on the percentage of AF36 product grains sporulating (SG) and the quantity of spores per grain using a sporulation index (SI) was determined. Under controlled conditions, SG was higher than 85% when soil moisture was 13% or more, and SI increased with increasing soil moisture from 8.4 to 21%. The highest AF36 sporulation occurred near the micro-sprinklers when the grains were not impacted by the irrigation water drops. Arthropod predation was responsible for lost product grains, which was more pronounced in non-tilled soil than in tilled soil. Dispersal of the AF36 spores decreased markedly with the height and distance from the inoculum source, following a pattern of diffusion equations. However, AF36 spores easily reached canopies of pistachios located 10 m from the inoculum source. Our results indicate that AF36 Prevail should be applied close to the irrigation line in the moist soil area but avoiding the areas where excess irrigation causes water accumulation. The biocontrol of aflatoxins in California's pistachio production areas was optimized by improving the field realization of the biological control agent.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"1118-1125\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-06-23-0200-KC\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-06-23-0200-KC","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Sporulation and Dispersal of the Biological Control Agent Aspergillus flavus AF36 Under Field Conditions.
Aflatoxins are carcinogens produced by the fungi Aspergillus flavus and A. parasiticus that contaminate pistachio crops. International markets reject pistachio when aflatoxins exceed permitted maximum levels. Releasing the atoxigenic strain AF36 of A. flavus is the leading aflatoxin pre-harvest control method. The product AF36 Prevail, sorghum grains coated with AF36 propagules, has been used in California since 2017. However, a high percentage of grains of the Prevail fail to sporulate in orchards. Here, the effect of soil moisture on the percentage of AF36 product grains sporulating (SG) and the quantity of spores per grain using a sporulation index (SI) was determined. Under controlled conditions, SG was higher than 85% when soil moisture was 13% or more, and SI increased with increasing soil moisture from 8.4 to 21%. The highest AF36 sporulation occurred near the micro-sprinklers when the grains were not impacted by the irrigation water drops. Arthropod predation was responsible for lost product grains, which was more pronounced in non-tilled soil than in tilled soil. Dispersal of the AF36 spores decreased markedly with the height and distance from the inoculum source, following a pattern of diffusion equations. However, AF36 spores easily reached canopies of pistachios located 10 m from the inoculum source. Our results indicate that AF36 Prevail should be applied close to the irrigation line in the moist soil area but avoiding the areas where excess irrigation causes water accumulation. The biocontrol of aflatoxins in California's pistachio production areas was optimized by improving the field realization of the biological control agent.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.