Kirsi Sepponen , Karolina Lundin , Dawit A. Yohannes , Sanna Vuoristo , Diego Balboa , Matti Poutanen , Claes Ohlsson , Steinar Hustad , Ersilia Bifulco , Pauliina Paloviita , Timo Otonkoski , Olli Ritvos , Kirsi Sainio , Juha S. Tapanainen , Timo Tuuri
{"title":"甾体生成因子1 (NR5A1)在人性腺样细胞分化过程中诱导多种转录变化","authors":"Kirsi Sepponen , Karolina Lundin , Dawit A. Yohannes , Sanna Vuoristo , Diego Balboa , Matti Poutanen , Claes Ohlsson , Steinar Hustad , Ersilia Bifulco , Pauliina Paloviita , Timo Otonkoski , Olli Ritvos , Kirsi Sainio , Juha S. Tapanainen , Timo Tuuri","doi":"10.1016/j.diff.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear receptor subfamily 5 group A member 1 (<em>NR5A1</em>) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of <em>NR5A1</em> during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous <em>NR5A1</em> expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without <em>NR5A1</em> activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of <em>NR5A1</em> expression. Of those, we identified novel gonad-related putative <em>NR5A1</em> targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, <em>NR5A1</em> activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of <em>NR5A1</em> we have for the first time, been able to examine in detail the effects of <em>NR5A1</em> in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"128 ","pages":"Pages 83-100"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468122000627/pdfft?md5=0da28e3431e42b334933817e1c25a649&pid=1-s2.0-S0301468122000627-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells\",\"authors\":\"Kirsi Sepponen , Karolina Lundin , Dawit A. Yohannes , Sanna Vuoristo , Diego Balboa , Matti Poutanen , Claes Ohlsson , Steinar Hustad , Ersilia Bifulco , Pauliina Paloviita , Timo Otonkoski , Olli Ritvos , Kirsi Sainio , Juha S. Tapanainen , Timo Tuuri\",\"doi\":\"10.1016/j.diff.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear receptor subfamily 5 group A member 1 (<em>NR5A1</em>) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of <em>NR5A1</em> during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous <em>NR5A1</em> expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without <em>NR5A1</em> activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of <em>NR5A1</em> expression. Of those, we identified novel gonad-related putative <em>NR5A1</em> targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, <em>NR5A1</em> activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of <em>NR5A1</em> we have for the first time, been able to examine in detail the effects of <em>NR5A1</em> in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.</p></div>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":\"128 \",\"pages\":\"Pages 83-100\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301468122000627/pdfft?md5=0da28e3431e42b334933817e1c25a649&pid=1-s2.0-S0301468122000627-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468122000627\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000627","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells
Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.