Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto
{"title":"使用YOLOv5x在光学显微镜图像中自动检测隐孢子虫:一项比较研究。","authors":"Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto","doi":"10.1139/bcb-2023-0059","DOIUrl":null,"url":null,"abstract":"<p><p>Here, a machine learning tool (YOLOv5) enables the detection of <i>Cryptosporidium</i> microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for <i>Cryptosporidium</i> detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for <i>Cryptosporidium</i> detection considering the differences in computational costs of the models.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"538-549"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of <i>Cryptosporidium</i> in optical microscopy images using YOLOv5<i>x</i>: a comparative study.\",\"authors\":\"Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto\",\"doi\":\"10.1139/bcb-2023-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, a machine learning tool (YOLOv5) enables the detection of <i>Cryptosporidium</i> microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for <i>Cryptosporidium</i> detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for <i>Cryptosporidium</i> detection considering the differences in computational costs of the models.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"538-549\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Automatic detection of Cryptosporidium in optical microscopy images using YOLOv5x: a comparative study.
Here, a machine learning tool (YOLOv5) enables the detection of Cryptosporidium microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for Cryptosporidium detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for Cryptosporidium detection considering the differences in computational costs of the models.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.