{"title":"表面活性剂类型对含羊膜间充质干细胞代谢物转移体的特性、皮肤渗透及抗衰老作用的影响。","authors":"Andang Miatmoko, Nurul Ailda Marufah, Qothrin Nada, Noorma Rosita, Tristiana Erawati, Joni Susanto, Kusuma Eko Purwantari, Arif Nurkanto, Widji Soeratri","doi":"10.1080/10717544.2022.2149895","DOIUrl":null,"url":null,"abstract":"<p><p>Transfersome has been developed to enhance dermal delivery of amniotic mesenchymal stem cell metabolite products (AMSC-MP). AMSC-MP contains many growth factors for managing skin aging, thus improving the quality of an adjusted life year. This study aims to determine the effect of surfactant types acting as the edge activator on transfersome-loading AMSC-MP. Transfersome was prepared by thin-layer hydration method and composed of l-α-phosphatidylcholine as a phospholipid and three types of surfactants, namely; cationic (stearylamine), anionic (sodium cholate), and nonionic surfactant (Tween 80) at a weight ratio of 85:15, respectively. Transfersomes were evaluated for physical characteristics, penetration, effectiveness, and safety. The results showed that sodium cholate, an anionic surfactant, produced the smallest transfersome particle size, i.e., 144.2 ± 3.2 nm, among all formulas. Trans-SA containing stearylamine had a positive charge of 41.53 ± 6.03 mV compared to Trans-SC and Trans-TW, whose respective charges were -56.9 ± 0.55 mV and -41.73 ± 0.86 mV. The small particle size and low negative value of zeta potential enabled high dermal penetration by transfersomes containing AMSC-MP, while the positive charge of stearylamine hindered its penetration of deeper skin layers. Trans-SC and Trans-TW produced higher collagen density values at 77.11 ± of 4.15% and 70.05 ± of 6.95%, than that of Trans-SA. All the AMSC-MP transfersomes were relatively safe with 0.5-1.0 macrophage cell numbers invaded the dermis per field of view. In conclusion, sodium cholate, an anionic surfactant, demonstrated considerable capacity as the edge activator of transfersome-loading AMSC-MP for skin anti-aging therapy.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"29 1","pages":"3443-3453"},"PeriodicalIF":6.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/5d/IDRD_29_2149895.PMC9731583.pdf","citationCount":"5","resultStr":"{\"title\":\"The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice.\",\"authors\":\"Andang Miatmoko, Nurul Ailda Marufah, Qothrin Nada, Noorma Rosita, Tristiana Erawati, Joni Susanto, Kusuma Eko Purwantari, Arif Nurkanto, Widji Soeratri\",\"doi\":\"10.1080/10717544.2022.2149895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transfersome has been developed to enhance dermal delivery of amniotic mesenchymal stem cell metabolite products (AMSC-MP). AMSC-MP contains many growth factors for managing skin aging, thus improving the quality of an adjusted life year. This study aims to determine the effect of surfactant types acting as the edge activator on transfersome-loading AMSC-MP. Transfersome was prepared by thin-layer hydration method and composed of l-α-phosphatidylcholine as a phospholipid and three types of surfactants, namely; cationic (stearylamine), anionic (sodium cholate), and nonionic surfactant (Tween 80) at a weight ratio of 85:15, respectively. Transfersomes were evaluated for physical characteristics, penetration, effectiveness, and safety. The results showed that sodium cholate, an anionic surfactant, produced the smallest transfersome particle size, i.e., 144.2 ± 3.2 nm, among all formulas. Trans-SA containing stearylamine had a positive charge of 41.53 ± 6.03 mV compared to Trans-SC and Trans-TW, whose respective charges were -56.9 ± 0.55 mV and -41.73 ± 0.86 mV. The small particle size and low negative value of zeta potential enabled high dermal penetration by transfersomes containing AMSC-MP, while the positive charge of stearylamine hindered its penetration of deeper skin layers. Trans-SC and Trans-TW produced higher collagen density values at 77.11 ± of 4.15% and 70.05 ± of 6.95%, than that of Trans-SA. All the AMSC-MP transfersomes were relatively safe with 0.5-1.0 macrophage cell numbers invaded the dermis per field of view. In conclusion, sodium cholate, an anionic surfactant, demonstrated considerable capacity as the edge activator of transfersome-loading AMSC-MP for skin anti-aging therapy.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"29 1\",\"pages\":\"3443-3453\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/5d/IDRD_29_2149895.PMC9731583.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2022.2149895\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2022.2149895","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice.
Transfersome has been developed to enhance dermal delivery of amniotic mesenchymal stem cell metabolite products (AMSC-MP). AMSC-MP contains many growth factors for managing skin aging, thus improving the quality of an adjusted life year. This study aims to determine the effect of surfactant types acting as the edge activator on transfersome-loading AMSC-MP. Transfersome was prepared by thin-layer hydration method and composed of l-α-phosphatidylcholine as a phospholipid and three types of surfactants, namely; cationic (stearylamine), anionic (sodium cholate), and nonionic surfactant (Tween 80) at a weight ratio of 85:15, respectively. Transfersomes were evaluated for physical characteristics, penetration, effectiveness, and safety. The results showed that sodium cholate, an anionic surfactant, produced the smallest transfersome particle size, i.e., 144.2 ± 3.2 nm, among all formulas. Trans-SA containing stearylamine had a positive charge of 41.53 ± 6.03 mV compared to Trans-SC and Trans-TW, whose respective charges were -56.9 ± 0.55 mV and -41.73 ± 0.86 mV. The small particle size and low negative value of zeta potential enabled high dermal penetration by transfersomes containing AMSC-MP, while the positive charge of stearylamine hindered its penetration of deeper skin layers. Trans-SC and Trans-TW produced higher collagen density values at 77.11 ± of 4.15% and 70.05 ± of 6.95%, than that of Trans-SA. All the AMSC-MP transfersomes were relatively safe with 0.5-1.0 macrophage cell numbers invaded the dermis per field of view. In conclusion, sodium cholate, an anionic surfactant, demonstrated considerable capacity as the edge activator of transfersome-loading AMSC-MP for skin anti-aging therapy.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.