在小样本量的背景下,通过链接随机森林的NEAT等式:一种机器学习方法。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-10-01 Epub Date: 2022-09-04 DOI:10.1177/00131644221120899
Zhehan Jiang, Yuting Han, Lingling Xu, Dexin Shi, Ren Liu, Jinying Ouyang, Fen Cai
{"title":"在小样本量的背景下,通过链接随机森林的NEAT等式:一种机器学习方法。","authors":"Zhehan Jiang, Yuting Han, Lingling Xu, Dexin Shi, Ren Liu, Jinying Ouyang, Fen Cai","doi":"10.1177/00131644221120899","DOIUrl":null,"url":null,"abstract":"<p><p>The part of responses that is absent in the nonequivalent groups with anchor test (NEAT) design can be managed to a planned missing scenario. In the context of small sample sizes, we present a machine learning (ML)-based imputation technique called chaining random forests (CRF) to perform equating tasks within the NEAT design. Specifically, seven CRF-based imputation equating methods are proposed based on different data augmentation methods. The equating performance of the proposed methods is examined through a simulation study. Five factors are considered: (a) test length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent groups taking the two forms (no mean difference versus a mean difference of 0.5), and (e) three different types of anchors (random, easy, and hard), resulting in 96 conditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine observed score method; (3) equipercentile equating method; (4) circle-arc method; and (5) concurrent calibration based on Rasch model, were also considered, plus seven CRF-based imputation equating methods for a total of 12 methods in this study. The findings suggest that benefiting from the advantages of ML techniques, CRF-based methods that incorporate the equating result of the Tucker method, such as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield more robust and trustable estimates for the \"missingness\" in an equating task and therefore result in more accurate equated scores than other counterparts in short-length tests with small samples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470159/pdf/","citationCount":"0","resultStr":"{\"title\":\"The NEAT Equating Via Chaining Random Forests in the Context of Small Sample Sizes: A Machine-Learning Method.\",\"authors\":\"Zhehan Jiang, Yuting Han, Lingling Xu, Dexin Shi, Ren Liu, Jinying Ouyang, Fen Cai\",\"doi\":\"10.1177/00131644221120899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The part of responses that is absent in the nonequivalent groups with anchor test (NEAT) design can be managed to a planned missing scenario. In the context of small sample sizes, we present a machine learning (ML)-based imputation technique called chaining random forests (CRF) to perform equating tasks within the NEAT design. Specifically, seven CRF-based imputation equating methods are proposed based on different data augmentation methods. The equating performance of the proposed methods is examined through a simulation study. Five factors are considered: (a) test length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent groups taking the two forms (no mean difference versus a mean difference of 0.5), and (e) three different types of anchors (random, easy, and hard), resulting in 96 conditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine observed score method; (3) equipercentile equating method; (4) circle-arc method; and (5) concurrent calibration based on Rasch model, were also considered, plus seven CRF-based imputation equating methods for a total of 12 methods in this study. The findings suggest that benefiting from the advantages of ML techniques, CRF-based methods that incorporate the equating result of the Tucker method, such as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield more robust and trustable estimates for the \\\"missingness\\\" in an equating task and therefore result in more accurate equated scores than other counterparts in short-length tests with small samples.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221120899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221120899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

锚定测试(NEAT)设计的非等效组中不存在的部分响应可以管理到计划缺失的场景。在小样本量的背景下,我们提出了一种基于机器学习(ML)的插补技术,称为链式随机森林(CRF),以在NEAT设计中执行等式任务。具体而言,基于不同的数据扩充方法,提出了七种基于CRF的插补等值方法。通过仿真研究检验了所提出方法的等效性能。考虑了五个因素:(a)测试长度(20、30、40、50),(b)每个测试形式的样本量(50对100),(c)常见/锚定项目的比率(0.2对0.3),以及(d)采用两种形式的等效组与非等效组(无平均差异与0.5的平均差异),和(e)三种不同类型的锚定(随机、简单和坚硬),导致96种条件。此外,还有五种传统的等值方法,(1)塔克法;(2) Levine观察评分法;(3) 等百分比等值法;(4) 圆弧法;和(5)基于Rasch模型的并行校准,加上本研究中总共12种方法的7种基于CRF的插补等值方法。研究结果表明,得益于ML技术的优势,基于CRF的方法结合了Tucker方法的等式结果,如IMP_total_Tucker、IMP_pair_Tucker和IMP_Tucker_cirlce方法,可以对等式任务中的“缺失”产生更稳健和可信的估计,因此在小样本的短长度测试中,与其他同行相比,可以获得更准确的等式分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The NEAT Equating Via Chaining Random Forests in the Context of Small Sample Sizes: A Machine-Learning Method.

The part of responses that is absent in the nonequivalent groups with anchor test (NEAT) design can be managed to a planned missing scenario. In the context of small sample sizes, we present a machine learning (ML)-based imputation technique called chaining random forests (CRF) to perform equating tasks within the NEAT design. Specifically, seven CRF-based imputation equating methods are proposed based on different data augmentation methods. The equating performance of the proposed methods is examined through a simulation study. Five factors are considered: (a) test length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent groups taking the two forms (no mean difference versus a mean difference of 0.5), and (e) three different types of anchors (random, easy, and hard), resulting in 96 conditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine observed score method; (3) equipercentile equating method; (4) circle-arc method; and (5) concurrent calibration based on Rasch model, were also considered, plus seven CRF-based imputation equating methods for a total of 12 methods in this study. The findings suggest that benefiting from the advantages of ML techniques, CRF-based methods that incorporate the equating result of the Tucker method, such as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield more robust and trustable estimates for the "missingness" in an equating task and therefore result in more accurate equated scores than other counterparts in short-length tests with small samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信