因子得分回归的小样本校正。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-06-01 Epub Date: 2022-07-02 DOI:10.1177/00131644221105505
Jasper Bogaert, Wen Wei Loh, Yves Rosseel
{"title":"因子得分回归的小样本校正。","authors":"Jasper Bogaert, Wen Wei Loh, Yves Rosseel","doi":"10.1177/00131644221105505","DOIUrl":null,"url":null,"abstract":"<p><p>Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177321/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Small Sample Correction for Factor Score Regression.\",\"authors\":\"Jasper Bogaert, Wen Wei Loh, Yves Rosseel\",\"doi\":\"10.1177/00131644221105505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221105505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221105505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

因子得分回归(FSR)作为传统结构方程模型(SEM)的一种便捷替代方法,被广泛用于评估潜变量之间的结构关系。但是,当潜在变量被简单地替换为因子得分时,由于因子得分的测量误差,结构参数估计的偏差往往需要修正。克罗恩方法(MOC)是一种著名的偏差校正技术。然而,在小样本(如少于 100 个样本)情况下,其标准实施可能会导致估算质量低下。本文旨在开发一种小样本校正方法(SSC),它整合了对标准 MOC 的两种不同修正。我们进行了一项模拟研究,比较了 (a) 标准 SEM、(b) 标准 MOC、(c) 天真 FSR 和 (d) MOC 与建议的 SSC 的经验性能。此外,我们还评估了 SSC 在具有不同数量预测因子和指标的各种模型中的稳健性。结果表明,与 SEM 和标准 MOC 相比,在小样本中,建议 SSC 的 MOC 产生的均方误差更小,性能与天真 FSR 相似。然而,由于未能考虑因子得分的测量误差,天真 FSR 比拟议的带 SSC 的 MOC 产生了更多偏差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Small Sample Correction for Factor Score Regression.

Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信