{"title":"因子得分回归的小样本校正。","authors":"Jasper Bogaert, Wen Wei Loh, Yves Rosseel","doi":"10.1177/00131644221105505","DOIUrl":null,"url":null,"abstract":"<p><p>Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177321/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Small Sample Correction for Factor Score Regression.\",\"authors\":\"Jasper Bogaert, Wen Wei Loh, Yves Rosseel\",\"doi\":\"10.1177/00131644221105505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221105505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221105505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
因子得分回归(FSR)作为传统结构方程模型(SEM)的一种便捷替代方法,被广泛用于评估潜变量之间的结构关系。但是,当潜在变量被简单地替换为因子得分时,由于因子得分的测量误差,结构参数估计的偏差往往需要修正。克罗恩方法(MOC)是一种著名的偏差校正技术。然而,在小样本(如少于 100 个样本)情况下,其标准实施可能会导致估算质量低下。本文旨在开发一种小样本校正方法(SSC),它整合了对标准 MOC 的两种不同修正。我们进行了一项模拟研究,比较了 (a) 标准 SEM、(b) 标准 MOC、(c) 天真 FSR 和 (d) MOC 与建议的 SSC 的经验性能。此外,我们还评估了 SSC 在具有不同数量预测因子和指标的各种模型中的稳健性。结果表明,与 SEM 和标准 MOC 相比,在小样本中,建议 SSC 的 MOC 产生的均方误差更小,性能与天真 FSR 相似。然而,由于未能考虑因子得分的测量误差,天真 FSR 比拟议的带 SSC 的 MOC 产生了更多偏差估计。
A Small Sample Correction for Factor Score Regression.
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.