{"title":"大鼠浅筋膜生成功能性脂肪类器官。","authors":"Yanfei Zhang, Yuanyuan Zhang, Yingyue Dong, Tongsheng Chen, Guoheng Xu","doi":"10.1080/21623945.2022.2072446","DOIUrl":null,"url":null,"abstract":"<p><p>The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually \"fat organoids\". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.<b>Abbreviations</b>: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116422/pdf/","citationCount":"4","resultStr":"{\"title\":\"Generation of functional fat organoid from rat superficial fascia.\",\"authors\":\"Yanfei Zhang, Yuanyuan Zhang, Yingyue Dong, Tongsheng Chen, Guoheng Xu\",\"doi\":\"10.1080/21623945.2022.2072446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually \\\"fat organoids\\\". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.<b>Abbreviations</b>: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116422/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2022.2072446\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2072446","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Generation of functional fat organoid from rat superficial fascia.
The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually "fat organoids". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.Abbreviations: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.