Ryan Kenneally , Quentin Lawrence , Ella Brydon , Kenneth H. Wan , Jian-Hua Mao , Subhash C. Verma , Amir Khazaieli , Susan E. Celniker , Antoine M. Snijders
{"title":"通过Fathhome的干式消毒装置灭活多种人类病原体:快速、环保的臭氧消毒","authors":"Ryan Kenneally , Quentin Lawrence , Ella Brydon , Kenneth H. Wan , Jian-Hua Mao , Subhash C. Verma , Amir Khazaieli , Susan E. Celniker , Antoine M. Snijders","doi":"10.1016/j.medmic.2022.100059","DOIUrl":null,"url":null,"abstract":"<div><p>SARS-CoV-2 spread rapidly, causing millions of deaths across the globe. As a result, demand for medical supplies and personal protective equipment (PPE) surged and supplies dwindled. Separate entirely, hospital-acquired infections have become commonplace and challenging to treat. To explore the potential of novel sterilization techniques, this study evaluated the disinfection efficacy of Fathhome's ozone-based, dry-sanitizing device by dose and time response. Inactivation of human pathogens was tested on non-porous (plastic) surfaces. 95.42–100% inactivation was observed across all types of vegetative microorganisms and 27.36% inactivation of bacterial endospores tested, with no residual ozone detectable after completion. These results strongly support the hypothesis that Fathhome's commercial implementation of gas-based disinfection is suitable for rapid decontamination of a wide variety of pathogens on PPE and other industrially relevant materials.</p></div>","PeriodicalId":36019,"journal":{"name":"Medicine in Microecology","volume":"14 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354387/pdf/","citationCount":"2","resultStr":"{\"title\":\"Inactivation of multiple human pathogens by Fathhome's dry sanitizer device: Rapid and eco-friendly ozone-based disinfection\",\"authors\":\"Ryan Kenneally , Quentin Lawrence , Ella Brydon , Kenneth H. Wan , Jian-Hua Mao , Subhash C. Verma , Amir Khazaieli , Susan E. Celniker , Antoine M. Snijders\",\"doi\":\"10.1016/j.medmic.2022.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SARS-CoV-2 spread rapidly, causing millions of deaths across the globe. As a result, demand for medical supplies and personal protective equipment (PPE) surged and supplies dwindled. Separate entirely, hospital-acquired infections have become commonplace and challenging to treat. To explore the potential of novel sterilization techniques, this study evaluated the disinfection efficacy of Fathhome's ozone-based, dry-sanitizing device by dose and time response. Inactivation of human pathogens was tested on non-porous (plastic) surfaces. 95.42–100% inactivation was observed across all types of vegetative microorganisms and 27.36% inactivation of bacterial endospores tested, with no residual ozone detectable after completion. These results strongly support the hypothesis that Fathhome's commercial implementation of gas-based disinfection is suitable for rapid decontamination of a wide variety of pathogens on PPE and other industrially relevant materials.</p></div>\",\"PeriodicalId\":36019,\"journal\":{\"name\":\"Medicine in Microecology\",\"volume\":\"14 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354387/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine in Microecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259009782200009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Microecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259009782200009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Inactivation of multiple human pathogens by Fathhome's dry sanitizer device: Rapid and eco-friendly ozone-based disinfection
SARS-CoV-2 spread rapidly, causing millions of deaths across the globe. As a result, demand for medical supplies and personal protective equipment (PPE) surged and supplies dwindled. Separate entirely, hospital-acquired infections have become commonplace and challenging to treat. To explore the potential of novel sterilization techniques, this study evaluated the disinfection efficacy of Fathhome's ozone-based, dry-sanitizing device by dose and time response. Inactivation of human pathogens was tested on non-porous (plastic) surfaces. 95.42–100% inactivation was observed across all types of vegetative microorganisms and 27.36% inactivation of bacterial endospores tested, with no residual ozone detectable after completion. These results strongly support the hypothesis that Fathhome's commercial implementation of gas-based disinfection is suitable for rapid decontamination of a wide variety of pathogens on PPE and other industrially relevant materials.