RACK1 的缺失通过激活 AKT/mTOR/ASCT2 轴促进谷氨酰胺成瘾,从而促进胃癌的肿瘤生长。

IF 4.9 2区 医学 Q2 CELL BIOLOGY
Cellular Oncology Pub Date : 2024-02-01 Epub Date: 2023-08-14 DOI:10.1007/s13402-023-00854-1
Mengqian Chen, Gaojia Wang, Zhijian Xu, Jie Sun, Bo Liu, Lei Chang, Jianxin Gu, Yuanyuan Ruan, Xiaodong Gao, Shushu Song
{"title":"RACK1 的缺失通过激活 AKT/mTOR/ASCT2 轴促进谷氨酰胺成瘾,从而促进胃癌的肿瘤生长。","authors":"Mengqian Chen, Gaojia Wang, Zhijian Xu, Jie Sun, Bo Liu, Lei Chang, Jianxin Gu, Yuanyuan Ruan, Xiaodong Gao, Shushu Song","doi":"10.1007/s13402-023-00854-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear.</p><p><strong>Methods: </strong>GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections.</p><p><strong>Results: </strong>Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR.</p><p><strong>Conclusion: </strong>Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"113-128"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer.\",\"authors\":\"Mengqian Chen, Gaojia Wang, Zhijian Xu, Jie Sun, Bo Liu, Lei Chang, Jianxin Gu, Yuanyuan Ruan, Xiaodong Gao, Shushu Song\",\"doi\":\"10.1007/s13402-023-00854-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear.</p><p><strong>Methods: </strong>GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections.</p><p><strong>Results: </strong>Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR.</p><p><strong>Conclusion: </strong>Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"113-128\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00854-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00854-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:代谢重编程与胃癌(GC)的发生密切相关,胃癌仍然是全球癌症相关死亡的第四大原因。作为 GC 的肿瘤抑制因子,活化 C 激酶 1 受体(RACK1)是否在代谢重编程中发挥调节作用目前仍不清楚:方法:利用 GC 细胞系和细胞衍生的异种移植小鼠模型来确定 RACK1 的生物学功能。流式细胞术和海马检测法分别用于检测细胞周期和耗氧率(OCR)。利用 Western 印迹、实时 PCR 和自噬双荧光检测法探讨信号传导。免疫组化检测了组织切片中RACK1及其他指标的表达:结果:RACK1的缺失以谷氨酰胺依赖的方式促进了GC细胞的活力、集落形成、细胞周期进展和OCR。进一步研究发现,RACK1的敲除抑制了丙氨酸-丝氨酸-半胱氨酸氨基酸转运体2(ASCT2)的溶酶体降解。从机理上讲,通过上调miR-146b-5p,抑制RACK1可显著降低PTEN的表达,从而激活AKT/mTOR信号通路,抑制自噬通量。此外,在体外和体内敲除 ASCT2 可逆转 RACK1 缺失对 GC 肿瘤生长的促进作用。组织芯片证实,RACK1与ASCT2和p62的表达以及mTOR的磷酸化呈负相关:总之,我们的研究结果表明,RACK1在GC中的抑制功能与ASCT2介导的谷氨酰胺代谢有关,这意味着靶向RACK1/ASCT2轴为GC治疗提供了潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer.

Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer.

Background: Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear.

Methods: GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections.

Results: Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR.

Conclusion: Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信