{"title":"大脑引导的流形转移提高了尖峰神经网络在图像分类中的性能。","authors":"Zahra Imani, Mehdi Ezoji, Timothée Masquelier","doi":"10.1007/s10827-023-00861-z","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs), as the third generation of neural networks, are based on biological models of human brain neurons. In this work, a shallow SNN plays the role of an explicit image decoder in the image classification. An LSTM-based EEG encoder is used to construct the EEG-based feature space, which is a discriminative space in viewpoint of classification accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped to the EEG-based discriminative features space by manifold transferring based on mutual k-Nearest Neighbors (Mk-NN MT). This proposed \"Brain-guided system\" improves the separability of the SNN-based visual feature space. In the test phase, the spike patterns extracted by SNN from the input image is mapped to LSTM-based EEG feature space, and then classified without need for the EEG signals. The SNN-based image encoder is trained by the conversion method and the results are evaluated and compared with other training methods on the challenging small ImageNet-EEG dataset. Experimental results show that the proposed transferring the manifold of the SNN-based feature space to LSTM-based EEG feature space leads to 14.25% improvement at most in the accuracy of image classification. Thus, embedding SNN in the brain-guided system which is trained on a small set, improves its performance in image classification.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"475-490"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-guided manifold transferring to improve the performance of spiking neural networks in image classification.\",\"authors\":\"Zahra Imani, Mehdi Ezoji, Timothée Masquelier\",\"doi\":\"10.1007/s10827-023-00861-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spiking neural networks (SNNs), as the third generation of neural networks, are based on biological models of human brain neurons. In this work, a shallow SNN plays the role of an explicit image decoder in the image classification. An LSTM-based EEG encoder is used to construct the EEG-based feature space, which is a discriminative space in viewpoint of classification accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped to the EEG-based discriminative features space by manifold transferring based on mutual k-Nearest Neighbors (Mk-NN MT). This proposed \\\"Brain-guided system\\\" improves the separability of the SNN-based visual feature space. In the test phase, the spike patterns extracted by SNN from the input image is mapped to LSTM-based EEG feature space, and then classified without need for the EEG signals. The SNN-based image encoder is trained by the conversion method and the results are evaluated and compared with other training methods on the challenging small ImageNet-EEG dataset. Experimental results show that the proposed transferring the manifold of the SNN-based feature space to LSTM-based EEG feature space leads to 14.25% improvement at most in the accuracy of image classification. Thus, embedding SNN in the brain-guided system which is trained on a small set, improves its performance in image classification.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"475-490\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-023-00861-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-023-00861-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Brain-guided manifold transferring to improve the performance of spiking neural networks in image classification.
Spiking neural networks (SNNs), as the third generation of neural networks, are based on biological models of human brain neurons. In this work, a shallow SNN plays the role of an explicit image decoder in the image classification. An LSTM-based EEG encoder is used to construct the EEG-based feature space, which is a discriminative space in viewpoint of classification accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped to the EEG-based discriminative features space by manifold transferring based on mutual k-Nearest Neighbors (Mk-NN MT). This proposed "Brain-guided system" improves the separability of the SNN-based visual feature space. In the test phase, the spike patterns extracted by SNN from the input image is mapped to LSTM-based EEG feature space, and then classified without need for the EEG signals. The SNN-based image encoder is trained by the conversion method and the results are evaluated and compared with other training methods on the challenging small ImageNet-EEG dataset. Experimental results show that the proposed transferring the manifold of the SNN-based feature space to LSTM-based EEG feature space leads to 14.25% improvement at most in the accuracy of image classification. Thus, embedding SNN in the brain-guided system which is trained on a small set, improves its performance in image classification.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.