{"title":"作为一种物种恢复技术的回交。","authors":"Dan Wharton","doi":"10.1002/zoo.21765","DOIUrl":null,"url":null,"abstract":"<p><p>An investigation was conducted on the phenotypic results of mouse hybridization and seven generations of backcrossing, observing reciprocal F1 hybrids and backcrosses of Mus spretus and a laboratory strain of Mus domesticus C57BL/6J. F1 hybrids, backcrosses, and pure control specimens were measured for 6 body characteristics, 4 pelage coloration characteristics, 14 behaviors, and reproduction as reflected in litter size. Backcrossing was pursued for seven generations to FBC7 (i.e., \"Backcross 7\" or seven generations from commencement of backcrossing from an F1 hybrid female) where species restoration is mathematically calculated to be at 99.7%. Except for a minority of FBC7 M. spretus specimens failing to conform completely to one pelage characteristic, FBC7 specimens were indistinguishable from controls both subjectively and in all areas of measurement. The M. spretus backcross line was followed generation by generation and was largely conforming to controls by FBC4 at latest. The same effect was observed in the reciprocal M. domesticus backcross line. Fertility was negatively affected in F1 hybrids but restored or improved in backcross generations. Discussion is offered on hybridization and backcrossing as it occurs in nature and how it has been used or could be used as an additional ex situ tool in wildlife conservation efforts. It is concluded that conservation-oriented backcrossing is a practical species/subspecies restoration technique and has the potential to make genetic rescue feasible with minimal gene flow at the binomial level. Backcrossing is most applicable in closely monitored ex situ settings (1) where only one sex remains of a given taxon; and (2) where inbreeding depression seriously threatens a remnant taxon's ability to recover, and the only gene flow option is from another distinct species.</p>","PeriodicalId":24035,"journal":{"name":"Zoo Biology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backcrossing as a species restoration technique.\",\"authors\":\"Dan Wharton\",\"doi\":\"10.1002/zoo.21765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An investigation was conducted on the phenotypic results of mouse hybridization and seven generations of backcrossing, observing reciprocal F1 hybrids and backcrosses of Mus spretus and a laboratory strain of Mus domesticus C57BL/6J. F1 hybrids, backcrosses, and pure control specimens were measured for 6 body characteristics, 4 pelage coloration characteristics, 14 behaviors, and reproduction as reflected in litter size. Backcrossing was pursued for seven generations to FBC7 (i.e., \\\"Backcross 7\\\" or seven generations from commencement of backcrossing from an F1 hybrid female) where species restoration is mathematically calculated to be at 99.7%. Except for a minority of FBC7 M. spretus specimens failing to conform completely to one pelage characteristic, FBC7 specimens were indistinguishable from controls both subjectively and in all areas of measurement. The M. spretus backcross line was followed generation by generation and was largely conforming to controls by FBC4 at latest. The same effect was observed in the reciprocal M. domesticus backcross line. Fertility was negatively affected in F1 hybrids but restored or improved in backcross generations. Discussion is offered on hybridization and backcrossing as it occurs in nature and how it has been used or could be used as an additional ex situ tool in wildlife conservation efforts. It is concluded that conservation-oriented backcrossing is a practical species/subspecies restoration technique and has the potential to make genetic rescue feasible with minimal gene flow at the binomial level. Backcrossing is most applicable in closely monitored ex situ settings (1) where only one sex remains of a given taxon; and (2) where inbreeding depression seriously threatens a remnant taxon's ability to recover, and the only gene flow option is from another distinct species.</p>\",\"PeriodicalId\":24035,\"journal\":{\"name\":\"Zoo Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoo Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/zoo.21765\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoo Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/zoo.21765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
An investigation was conducted on the phenotypic results of mouse hybridization and seven generations of backcrossing, observing reciprocal F1 hybrids and backcrosses of Mus spretus and a laboratory strain of Mus domesticus C57BL/6J. F1 hybrids, backcrosses, and pure control specimens were measured for 6 body characteristics, 4 pelage coloration characteristics, 14 behaviors, and reproduction as reflected in litter size. Backcrossing was pursued for seven generations to FBC7 (i.e., "Backcross 7" or seven generations from commencement of backcrossing from an F1 hybrid female) where species restoration is mathematically calculated to be at 99.7%. Except for a minority of FBC7 M. spretus specimens failing to conform completely to one pelage characteristic, FBC7 specimens were indistinguishable from controls both subjectively and in all areas of measurement. The M. spretus backcross line was followed generation by generation and was largely conforming to controls by FBC4 at latest. The same effect was observed in the reciprocal M. domesticus backcross line. Fertility was negatively affected in F1 hybrids but restored or improved in backcross generations. Discussion is offered on hybridization and backcrossing as it occurs in nature and how it has been used or could be used as an additional ex situ tool in wildlife conservation efforts. It is concluded that conservation-oriented backcrossing is a practical species/subspecies restoration technique and has the potential to make genetic rescue feasible with minimal gene flow at the binomial level. Backcrossing is most applicable in closely monitored ex situ settings (1) where only one sex remains of a given taxon; and (2) where inbreeding depression seriously threatens a remnant taxon's ability to recover, and the only gene flow option is from another distinct species.
期刊介绍:
Zoo Biology is concerned with reproduction, demographics, genetics, behavior, medicine, husbandry, nutrition, conservation and all empirical aspects of the exhibition and maintenance of wild animals in wildlife parks, zoos, and aquariums. This diverse journal offers a forum for effectively communicating scientific findings, original ideas, and critical thinking related to the role of wildlife collections and their unique contribution to conservation.