{"title":"多源功能块缺失数据的多项式逻辑因子回归。","authors":"Xiuli Du, Xiaohu Jiang, Jinguan Lin","doi":"10.1007/s11336-023-09918-5","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-source functional block-wise missing data arise more commonly in medical care recently with the rapid development of big data and medical technology, hence there is an urgent need to develop efficient dimension reduction to extract important information for classification under such data. However, most existing methods for classification problems consider high-dimensional data as covariates. In the paper, we propose a novel multinomial imputed-factor Logistic regression model with multi-source functional block-wise missing data as covariates. Our main contribution is to establishing two multinomial factor regression models by using the imputed multi-source functional principal component scores and imputed canonical scores as covariates, respectively, where the missing factors are imputed by both the conditional mean imputation and the multiple block-wise imputation approaches. Specifically, the univariate FPCA is carried out for the observable data of each data source firstly to obtain the univariate principal component scores and the eigenfunctions. Then, the block-wise missing univariate principal component scores instead of the block-wise missing functional data are imputed by the conditional mean imputation method and the multiple block-wise imputation method, respectively. After that, based on the imputed univariate factors, the multi-source principal component scores are constructed by using the relationship between the multi-source principal component scores and the univariate principal component scores; and at the same time, the canonical scores are obtained by the multiple-set canonial correlation analysis. Finally, the multinomial imputed-factor Logistic regression model is established with the multi-source principal component scores or the canonical scores as factors. Numerical simulations and real data analysis on ADNI data show the proposed method works well.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"88 3","pages":"975-1001"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data.\",\"authors\":\"Xiuli Du, Xiaohu Jiang, Jinguan Lin\",\"doi\":\"10.1007/s11336-023-09918-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-source functional block-wise missing data arise more commonly in medical care recently with the rapid development of big data and medical technology, hence there is an urgent need to develop efficient dimension reduction to extract important information for classification under such data. However, most existing methods for classification problems consider high-dimensional data as covariates. In the paper, we propose a novel multinomial imputed-factor Logistic regression model with multi-source functional block-wise missing data as covariates. Our main contribution is to establishing two multinomial factor regression models by using the imputed multi-source functional principal component scores and imputed canonical scores as covariates, respectively, where the missing factors are imputed by both the conditional mean imputation and the multiple block-wise imputation approaches. Specifically, the univariate FPCA is carried out for the observable data of each data source firstly to obtain the univariate principal component scores and the eigenfunctions. Then, the block-wise missing univariate principal component scores instead of the block-wise missing functional data are imputed by the conditional mean imputation method and the multiple block-wise imputation method, respectively. After that, based on the imputed univariate factors, the multi-source principal component scores are constructed by using the relationship between the multi-source principal component scores and the univariate principal component scores; and at the same time, the canonical scores are obtained by the multiple-set canonial correlation analysis. Finally, the multinomial imputed-factor Logistic regression model is established with the multi-source principal component scores or the canonical scores as factors. Numerical simulations and real data analysis on ADNI data show the proposed method works well.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\"88 3\",\"pages\":\"975-1001\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09918-5\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09918-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data.
Multi-source functional block-wise missing data arise more commonly in medical care recently with the rapid development of big data and medical technology, hence there is an urgent need to develop efficient dimension reduction to extract important information for classification under such data. However, most existing methods for classification problems consider high-dimensional data as covariates. In the paper, we propose a novel multinomial imputed-factor Logistic regression model with multi-source functional block-wise missing data as covariates. Our main contribution is to establishing two multinomial factor regression models by using the imputed multi-source functional principal component scores and imputed canonical scores as covariates, respectively, where the missing factors are imputed by both the conditional mean imputation and the multiple block-wise imputation approaches. Specifically, the univariate FPCA is carried out for the observable data of each data source firstly to obtain the univariate principal component scores and the eigenfunctions. Then, the block-wise missing univariate principal component scores instead of the block-wise missing functional data are imputed by the conditional mean imputation method and the multiple block-wise imputation method, respectively. After that, based on the imputed univariate factors, the multi-source principal component scores are constructed by using the relationship between the multi-source principal component scores and the univariate principal component scores; and at the same time, the canonical scores are obtained by the multiple-set canonial correlation analysis. Finally, the multinomial imputed-factor Logistic regression model is established with the multi-source principal component scores or the canonical scores as factors. Numerical simulations and real data analysis on ADNI data show the proposed method works well.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.