{"title":"人类视觉认知的超高场成像。","authors":"Ke Jia, Rainer Goebel, Zoe Kourtzi","doi":"10.1146/annurev-vision-111022-123830","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"479-500"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra-High Field Imaging of Human Visual Cognition.\",\"authors\":\"Ke Jia, Rainer Goebel, Zoe Kourtzi\",\"doi\":\"10.1146/annurev-vision-111022-123830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\"9 \",\"pages\":\"479-500\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-111022-123830\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-111022-123830","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Ultra-High Field Imaging of Human Visual Cognition.
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.