Yong-Jun Liu, Kim N Green, Todd C Holmes, Xiangmin Xu
{"title":"评论:小胶质细胞如何调节成人大脑中的神经回路连接和活动?","authors":"Yong-Jun Liu, Kim N Green, Todd C Holmes, Xiangmin Xu","doi":"10.1177/26331055211071124","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are the primary immune cells in CNS. Recent work shows that microglia are also essential for proper brain development through synaptic pruning and remodeling during early life development. But the question of whether and how microglia regulate synaptic connectivity in the adult brain remains open. Our recently published study provides new insights into the functional roles of microglia in the adult mouse brain. We find that chronic depletion of microglia via CSF1R inhibitors in the visual cortex in adult mice induces a dramatic increase in perineuronal nets, and enhances neural activities of both excitatory neurons and parvalbumin interneurons. These findings highlight new potential therapeutic avenues to enhance adult neural plasticity by manipulating microglia.</p>","PeriodicalId":36527,"journal":{"name":"Neuroscience Insights","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/23/bc/10.1177_26331055211071124.PMC8796061.pdf","citationCount":"1","resultStr":"{\"title\":\"Commentary: How Do Microglia Regulate Neural Circuit Connectivity and Activity in the Adult Brain?\",\"authors\":\"Yong-Jun Liu, Kim N Green, Todd C Holmes, Xiangmin Xu\",\"doi\":\"10.1177/26331055211071124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia are the primary immune cells in CNS. Recent work shows that microglia are also essential for proper brain development through synaptic pruning and remodeling during early life development. But the question of whether and how microglia regulate synaptic connectivity in the adult brain remains open. Our recently published study provides new insights into the functional roles of microglia in the adult mouse brain. We find that chronic depletion of microglia via CSF1R inhibitors in the visual cortex in adult mice induces a dramatic increase in perineuronal nets, and enhances neural activities of both excitatory neurons and parvalbumin interneurons. These findings highlight new potential therapeutic avenues to enhance adult neural plasticity by manipulating microglia.</p>\",\"PeriodicalId\":36527,\"journal\":{\"name\":\"Neuroscience Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/23/bc/10.1177_26331055211071124.PMC8796061.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26331055211071124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26331055211071124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Commentary: How Do Microglia Regulate Neural Circuit Connectivity and Activity in the Adult Brain?
Microglia are the primary immune cells in CNS. Recent work shows that microglia are also essential for proper brain development through synaptic pruning and remodeling during early life development. But the question of whether and how microglia regulate synaptic connectivity in the adult brain remains open. Our recently published study provides new insights into the functional roles of microglia in the adult mouse brain. We find that chronic depletion of microglia via CSF1R inhibitors in the visual cortex in adult mice induces a dramatic increase in perineuronal nets, and enhances neural activities of both excitatory neurons and parvalbumin interneurons. These findings highlight new potential therapeutic avenues to enhance adult neural plasticity by manipulating microglia.