Seungjin Lee, Jinseop Ahn, Seok-Man Kim, Daehan Kim, Jiun Yeom, Jeongmok Kim, Joong Yull Park, Buom-Yong Ryu
{"title":"减轻不希望的细胞效应的流体动力学设计及其在睾丸细胞对内分泌干扰物反应测试中的应用。","authors":"Seungjin Lee, Jinseop Ahn, Seok-Man Kim, Daehan Kim, Jiun Yeom, Jeongmok Kim, Joong Yull Park, Buom-Yong Ryu","doi":"10.1186/s13036-023-00369-1","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 μM to 79.3 μM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"17 1","pages":"51"},"PeriodicalIF":5.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluid dynamic design for mitigating undesired cell effects and its application to testis cell response testing to endocrine disruptors.\",\"authors\":\"Seungjin Lee, Jinseop Ahn, Seok-Man Kim, Daehan Kim, Jiun Yeom, Jeongmok Kim, Joong Yull Park, Buom-Yong Ryu\",\"doi\":\"10.1186/s13036-023-00369-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 μM to 79.3 μM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"17 1\",\"pages\":\"51\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-023-00369-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00369-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fluid dynamic design for mitigating undesired cell effects and its application to testis cell response testing to endocrine disruptors.
Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 μM to 79.3 μM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.