Sumedha Singla, Nihal Murali, Forough Arabshahi, Sofia Triantafyllou, Kayhan Batmanghelich
{"title":"反事实解释的扩充——修复一个过于自信的分类器。","authors":"Sumedha Singla, Nihal Murali, Forough Arabshahi, Sofia Triantafyllou, Kayhan Batmanghelich","doi":"10.1109/wacv56688.2023.00470","DOIUrl":null,"url":null,"abstract":"<p><p>A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving. The classification outcome should reflect a high uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The model should also refrain from making overconfident decisions on samples that lie far outside its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel classes that lie near its training distribution (near-OOD). This paper proposes an application of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer (ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the revised model have improved uncertainty measures, and its performance is competitive to the state-of-the-art methods.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2023 ","pages":"4709-4719"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506513/pdf/nihms-1915803.pdf","citationCount":"1","resultStr":"{\"title\":\"Augmentation by Counterfactual Explanation - Fixing an Overconfident Classifier.\",\"authors\":\"Sumedha Singla, Nihal Murali, Forough Arabshahi, Sofia Triantafyllou, Kayhan Batmanghelich\",\"doi\":\"10.1109/wacv56688.2023.00470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving. The classification outcome should reflect a high uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The model should also refrain from making overconfident decisions on samples that lie far outside its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel classes that lie near its training distribution (near-OOD). This paper proposes an application of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer (ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the revised model have improved uncertainty measures, and its performance is competitive to the state-of-the-art methods.</p>\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"2023 \",\"pages\":\"4709-4719\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506513/pdf/nihms-1915803.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wacv56688.2023.00470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv56688.2023.00470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Augmentation by Counterfactual Explanation - Fixing an Overconfident Classifier.
A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving. The classification outcome should reflect a high uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The model should also refrain from making overconfident decisions on samples that lie far outside its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel classes that lie near its training distribution (near-OOD). This paper proposes an application of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer (ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the revised model have improved uncertainty measures, and its performance is competitive to the state-of-the-art methods.