Shimaa Saad El-Din, Laila Ahmed Rashed, Doaa Saeed Mohamed, Mervat Eissa, Reham Mohammad Raafat Hamed, Rania Elsayed Hussein
{"title":"circRNA-0067835通过靶向微小RNA-155在白塞病中的调节作用:ATG1、AKT和MTOR的意义。","authors":"Shimaa Saad El-Din, Laila Ahmed Rashed, Doaa Saeed Mohamed, Mervat Eissa, Reham Mohammad Raafat Hamed, Rania Elsayed Hussein","doi":"10.52547/rbmb.12.1.195","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autophagy has been proven to contribute to maintaining eukaryotic cells' normal intracellular homeostasis, whereas autophagy malfunction may predispose to Behcet Disease (BD). The accumulation of the products of autophagic degradation as well as impairment in autophagic flux in cases with BD, may be attributed to dysregulated miRNA-155 expression. This study attempts to determine the contribution of circRNA-0067835 in miRNA-155-mediated modulation of the autophagy axis as well as to investigate its impact on the production of pro-inflammatory cytokines in BD.</p><p><strong>Methods: </strong>This study was carried out on 40 cases with BD and 40 healthy control subjects. The collection of serum samples was done before performing a real-time PCR to estimate the relative gene expression of ATG1, AKT, miRNA-155, mTOR, TAB2, and circRNA-0067835. Additionally, IL-1β, IL-17, and TNF-α serum levels were determined by ELISA.</p><p><strong>Results: </strong>Behcet Disease (BD) patients had significantly upregulated circRNA-0067835, with subsequent downregulation of its target gene, miRNA-155 than controls (P<0.05). In addition, decreased miRNA-155 gene expression was correlated with significantly increased TAB2 gene expression levels in BD patients compared to the controls (P<0.05). Furthermore, enhanced production of pro-inflammatory cytokines was detected in cases with BD than in controls.</p><p><strong>Conclusion: </strong>The correlation between circRNA-0067835 and miRNA-155 fairly contributes to the regulation of cytokine production in BD via the modulation of autophagy. The investigation of the circRNA-0067835 and the microRNA-155 and their downstream adaptor molecules could be a potential therapeutic agent for BD.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"12 1","pages":"195-204"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505462/pdf/rbmb-12-195.pdf","citationCount":"0","resultStr":"{\"title\":\"Regulatory Role of circRNA-0067835 in Behcet Disease through Targeting Micro RNA-155: Implication of <i>ATG1, AKT</i> and <i>MTOR</i>.\",\"authors\":\"Shimaa Saad El-Din, Laila Ahmed Rashed, Doaa Saeed Mohamed, Mervat Eissa, Reham Mohammad Raafat Hamed, Rania Elsayed Hussein\",\"doi\":\"10.52547/rbmb.12.1.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Autophagy has been proven to contribute to maintaining eukaryotic cells' normal intracellular homeostasis, whereas autophagy malfunction may predispose to Behcet Disease (BD). The accumulation of the products of autophagic degradation as well as impairment in autophagic flux in cases with BD, may be attributed to dysregulated miRNA-155 expression. This study attempts to determine the contribution of circRNA-0067835 in miRNA-155-mediated modulation of the autophagy axis as well as to investigate its impact on the production of pro-inflammatory cytokines in BD.</p><p><strong>Methods: </strong>This study was carried out on 40 cases with BD and 40 healthy control subjects. The collection of serum samples was done before performing a real-time PCR to estimate the relative gene expression of ATG1, AKT, miRNA-155, mTOR, TAB2, and circRNA-0067835. Additionally, IL-1β, IL-17, and TNF-α serum levels were determined by ELISA.</p><p><strong>Results: </strong>Behcet Disease (BD) patients had significantly upregulated circRNA-0067835, with subsequent downregulation of its target gene, miRNA-155 than controls (P<0.05). In addition, decreased miRNA-155 gene expression was correlated with significantly increased TAB2 gene expression levels in BD patients compared to the controls (P<0.05). Furthermore, enhanced production of pro-inflammatory cytokines was detected in cases with BD than in controls.</p><p><strong>Conclusion: </strong>The correlation between circRNA-0067835 and miRNA-155 fairly contributes to the regulation of cytokine production in BD via the modulation of autophagy. The investigation of the circRNA-0067835 and the microRNA-155 and their downstream adaptor molecules could be a potential therapeutic agent for BD.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"12 1\",\"pages\":\"195-204\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505462/pdf/rbmb-12-195.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/rbmb.12.1.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/rbmb.12.1.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulatory Role of circRNA-0067835 in Behcet Disease through Targeting Micro RNA-155: Implication of ATG1, AKT and MTOR.
Background: Autophagy has been proven to contribute to maintaining eukaryotic cells' normal intracellular homeostasis, whereas autophagy malfunction may predispose to Behcet Disease (BD). The accumulation of the products of autophagic degradation as well as impairment in autophagic flux in cases with BD, may be attributed to dysregulated miRNA-155 expression. This study attempts to determine the contribution of circRNA-0067835 in miRNA-155-mediated modulation of the autophagy axis as well as to investigate its impact on the production of pro-inflammatory cytokines in BD.
Methods: This study was carried out on 40 cases with BD and 40 healthy control subjects. The collection of serum samples was done before performing a real-time PCR to estimate the relative gene expression of ATG1, AKT, miRNA-155, mTOR, TAB2, and circRNA-0067835. Additionally, IL-1β, IL-17, and TNF-α serum levels were determined by ELISA.
Results: Behcet Disease (BD) patients had significantly upregulated circRNA-0067835, with subsequent downregulation of its target gene, miRNA-155 than controls (P<0.05). In addition, decreased miRNA-155 gene expression was correlated with significantly increased TAB2 gene expression levels in BD patients compared to the controls (P<0.05). Furthermore, enhanced production of pro-inflammatory cytokines was detected in cases with BD than in controls.
Conclusion: The correlation between circRNA-0067835 and miRNA-155 fairly contributes to the regulation of cytokine production in BD via the modulation of autophagy. The investigation of the circRNA-0067835 and the microRNA-155 and their downstream adaptor molecules could be a potential therapeutic agent for BD.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.