氧化应激和Nrf2/HO-1通路在戊四唑诱导的老年大鼠癫痫中的可能作用。

IF 1.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Walaa Obydah, Ahmed Fathi Abouelnaga, Marwa Abass, Somaya Saad, Asmaa Yehia, Omar Abd-Alhakem Ammar, Alaa Mohamed Badawy, Mohie Mahmoud Ibrahim, Abdelaziz Mohamed Hussein
{"title":"氧化应激和Nrf2/HO-1通路在戊四唑诱导的老年大鼠癫痫中的可能作用。","authors":"Walaa Obydah,&nbsp;Ahmed Fathi Abouelnaga,&nbsp;Marwa Abass,&nbsp;Somaya Saad,&nbsp;Asmaa Yehia,&nbsp;Omar Abd-Alhakem Ammar,&nbsp;Alaa Mohamed Badawy,&nbsp;Mohie Mahmoud Ibrahim,&nbsp;Abdelaziz Mohamed Hussein","doi":"10.52547/rbmb.12.1.147","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response.</p><p><strong>Methods: </strong>Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues.</p><p><strong>Results: </strong>Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01).</p><p><strong>Conclusion: </strong>Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"12 1","pages":"147-158"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505472/pdf/rbmb-12-147.pdf","citationCount":"0","resultStr":"{\"title\":\"Possible Role of Oxidative Stress and Nrf2/HO-1 Pathway in Pentylenetetrazole-induced Epilepsy in Aged Rats.\",\"authors\":\"Walaa Obydah,&nbsp;Ahmed Fathi Abouelnaga,&nbsp;Marwa Abass,&nbsp;Somaya Saad,&nbsp;Asmaa Yehia,&nbsp;Omar Abd-Alhakem Ammar,&nbsp;Alaa Mohamed Badawy,&nbsp;Mohie Mahmoud Ibrahim,&nbsp;Abdelaziz Mohamed Hussein\",\"doi\":\"10.52547/rbmb.12.1.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response.</p><p><strong>Methods: </strong>Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues.</p><p><strong>Results: </strong>Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01).</p><p><strong>Conclusion: </strong>Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"12 1\",\"pages\":\"147-158\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505472/pdf/rbmb-12-147.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/rbmb.12.1.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/rbmb.12.1.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:研究衰老对大鼠对戊四唑(PTZ)诱导的癫痫反应的影响,以及氧化应激和核因子-红细胞2型相关因子2(Nrf2)/血红素加氧酶(HO)-1通路在这种反应中的可能作用。方法:将40只雄性白化大鼠随机分为4组;1) 年轻对照组(YC),年龄8-12周,2)老年对照组(OC),年龄24个月,3)PTZ年轻组:年轻大鼠接受PTZ(50mg/Kg,隔日腹腔注射)2周,4)PTZ老年组:作为第3组,但大鼠已衰老。记录大鼠的癫痫发作评分阶段和第一次急跳的潜伏期。评估脑组织中的氧化还原状态标志物,包括丙二醛(MDA)、过氧化氢酶和总抗氧化能力(TAC)。此外,还测量了Nrf2和HO-1基因在脑组织中的表达。结果:与年轻大鼠相比,老年大鼠给予PTZ后癫痫发作评分早期显著升高,癫痫发作潜伏期显著下降(P结论:衰老增加了大鼠对PTZ诱导的癫痫的易感性,其作用可能归因于氧化应激的上调和包括Nrf2和HO-1在内的抗氧化途径的下调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Possible Role of Oxidative Stress and Nrf2/HO-1 Pathway in Pentylenetetrazole-induced Epilepsy in Aged Rats.

Background: To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response.

Methods: Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues.

Results: Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01).

Conclusion: Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports of Biochemistry and Molecular Biology
Reports of Biochemistry and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
2.80
自引率
23.50%
发文量
60
审稿时长
10 weeks
期刊介绍: The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信