Xiaolei Liu, William D Jones, Mathieu Quesnel-Vallières, Sudhish A Devadiga, Kristin Lorent, Alexander J Valvezan, Rebecca L Myers, Ning Li, Christopher J Lengner, Yoseph Barash, Michael Pack, Peter S Klein
{"title":"肿瘤抑制因子腺瘤性大肠息肉病(apc)是斑马鱼神经嵴依赖性颅面发育所必需的。","authors":"Xiaolei Liu, William D Jones, Mathieu Quesnel-Vallières, Sudhish A Devadiga, Kristin Lorent, Alexander J Valvezan, Rebecca L Myers, Ning Li, Christopher J Lengner, Yoseph Barash, Michael Pack, Peter S Klein","doi":"10.3390/jdb11030029","DOIUrl":null,"url":null,"abstract":"<p><p>Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor <i>Adenomatous Polyposis Coli</i> (<i>apc)</i> disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, <i>apc<sup>mcr/mcr</sup></i> larvae express substantially higher levels of <i>complement c3</i>, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in <i>stroma-derived factor 1</i> (<i>sdf1/cxcl12</i>), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in <i>apc</i> mutant zebrafish, including a splice variant that deletes a conserved domain in <i>semaphorin 3f</i> (<i>sema3f</i>), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for <i>apc</i> in CNC development in the context of some of the seminal findings of Mayor and colleagues.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366761/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Tumor Suppressor <i>Adenomatous Polyposis Coli (apc)</i> Is Required for Neural Crest-Dependent Craniofacial Development in Zebrafish.\",\"authors\":\"Xiaolei Liu, William D Jones, Mathieu Quesnel-Vallières, Sudhish A Devadiga, Kristin Lorent, Alexander J Valvezan, Rebecca L Myers, Ning Li, Christopher J Lengner, Yoseph Barash, Michael Pack, Peter S Klein\",\"doi\":\"10.3390/jdb11030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor <i>Adenomatous Polyposis Coli</i> (<i>apc)</i> disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, <i>apc<sup>mcr/mcr</sup></i> larvae express substantially higher levels of <i>complement c3</i>, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in <i>stroma-derived factor 1</i> (<i>sdf1/cxcl12</i>), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in <i>apc</i> mutant zebrafish, including a splice variant that deletes a conserved domain in <i>semaphorin 3f</i> (<i>sema3f</i>), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for <i>apc</i> in CNC development in the context of some of the seminal findings of Mayor and colleagues.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb11030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb11030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The Tumor Suppressor Adenomatous Polyposis Coli (apc) Is Required for Neural Crest-Dependent Craniofacial Development in Zebrafish.
Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.