Hadeer Ahmed Mohamed Ibrahim, Abdelaziz Mohamed Hussein, Mahmoud Gabr, Rasha Aly El-Saeed, Omar Abd-Alhakem Ammar, Ahmed Abdulatif Hassan Mosa, Abdel-Aziz Fatouh Abdel-Aziz
{"title":"褪黑素对脂肪间充质干细胞多巴胺能神经元分化中α突触核蛋白和自噬的影响。","authors":"Hadeer Ahmed Mohamed Ibrahim, Abdelaziz Mohamed Hussein, Mahmoud Gabr, Rasha Aly El-Saeed, Omar Abd-Alhakem Ammar, Ahmed Abdulatif Hassan Mosa, Abdel-Aziz Fatouh Abdel-Aziz","doi":"10.52547/rbmb.12.1.13","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The current work investigated the effect of melatonin on differentiation of adipose mesenchymal stem cells (AD-MSCs) into dopamine producing cells and its effect on autophagy process and alpha-Synuclein (α-Syn) secretion.</p><p><strong>Methods: </strong>AD-MSCs were characterized by flow cytometry and divided into 4 groups; i) control group (AD-MSCs without any treatment), ii) M+MSCs group (MSCs treated with 1 µM melatonin for 12 days), iii) DN group (MSCs cultured in neurobasal A medium and essential neuronal growth factors for 12 days) and iv) DN+M group (MSCs cultured in neurobasal A medium and 1µM melatonin for 12 days. By the end of experiments, the dopamine and α-Syn levels using ELISA, the expression of MAP-2, m-TOR and α-Syn genes at the level of mRNA and detection of autophagosomes formation using transmission electron microscope were performed.</p><p><strong>Results: </strong>We found that the isolated cells were MSCs due to their positivity expression for CD105 and CD90 and negativity expression for CD34 and CD45. The concentration of dopamine was significantly higher and α-Syn concentration was significantly lower in DN+M group when compared to other groups (P< 0.005). Also, this group showed the highly expression for MAP-2 gene and less expression for m-TOR and α-Syn genes (P< 0.005). Moreover, there was significantly increase in autophagosomes formation in this group than another group (P< 0.005).</p><p><strong>Conclusions: </strong>It is concluded that the melatonin promotes the differentiation of rat AD-MSCs into dopaminergic cells via induction of autophagy process and reduction of α-Syn secretion.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"12 1","pages":"13-26"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505464/pdf/rbmb-12-13.pdf","citationCount":"1","resultStr":"{\"title\":\"Effect of Melatonin on Alpha Synuclein and Autophagy in Dopaminergic Neuronal Differentiation of Adipose Mesenchymal Stem Cells.\",\"authors\":\"Hadeer Ahmed Mohamed Ibrahim, Abdelaziz Mohamed Hussein, Mahmoud Gabr, Rasha Aly El-Saeed, Omar Abd-Alhakem Ammar, Ahmed Abdulatif Hassan Mosa, Abdel-Aziz Fatouh Abdel-Aziz\",\"doi\":\"10.52547/rbmb.12.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The current work investigated the effect of melatonin on differentiation of adipose mesenchymal stem cells (AD-MSCs) into dopamine producing cells and its effect on autophagy process and alpha-Synuclein (α-Syn) secretion.</p><p><strong>Methods: </strong>AD-MSCs were characterized by flow cytometry and divided into 4 groups; i) control group (AD-MSCs without any treatment), ii) M+MSCs group (MSCs treated with 1 µM melatonin for 12 days), iii) DN group (MSCs cultured in neurobasal A medium and essential neuronal growth factors for 12 days) and iv) DN+M group (MSCs cultured in neurobasal A medium and 1µM melatonin for 12 days. By the end of experiments, the dopamine and α-Syn levels using ELISA, the expression of MAP-2, m-TOR and α-Syn genes at the level of mRNA and detection of autophagosomes formation using transmission electron microscope were performed.</p><p><strong>Results: </strong>We found that the isolated cells were MSCs due to their positivity expression for CD105 and CD90 and negativity expression for CD34 and CD45. The concentration of dopamine was significantly higher and α-Syn concentration was significantly lower in DN+M group when compared to other groups (P< 0.005). Also, this group showed the highly expression for MAP-2 gene and less expression for m-TOR and α-Syn genes (P< 0.005). Moreover, there was significantly increase in autophagosomes formation in this group than another group (P< 0.005).</p><p><strong>Conclusions: </strong>It is concluded that the melatonin promotes the differentiation of rat AD-MSCs into dopaminergic cells via induction of autophagy process and reduction of α-Syn secretion.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"12 1\",\"pages\":\"13-26\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505464/pdf/rbmb-12-13.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/rbmb.12.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/rbmb.12.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Melatonin on Alpha Synuclein and Autophagy in Dopaminergic Neuronal Differentiation of Adipose Mesenchymal Stem Cells.
Background: The current work investigated the effect of melatonin on differentiation of adipose mesenchymal stem cells (AD-MSCs) into dopamine producing cells and its effect on autophagy process and alpha-Synuclein (α-Syn) secretion.
Methods: AD-MSCs were characterized by flow cytometry and divided into 4 groups; i) control group (AD-MSCs without any treatment), ii) M+MSCs group (MSCs treated with 1 µM melatonin for 12 days), iii) DN group (MSCs cultured in neurobasal A medium and essential neuronal growth factors for 12 days) and iv) DN+M group (MSCs cultured in neurobasal A medium and 1µM melatonin for 12 days. By the end of experiments, the dopamine and α-Syn levels using ELISA, the expression of MAP-2, m-TOR and α-Syn genes at the level of mRNA and detection of autophagosomes formation using transmission electron microscope were performed.
Results: We found that the isolated cells were MSCs due to their positivity expression for CD105 and CD90 and negativity expression for CD34 and CD45. The concentration of dopamine was significantly higher and α-Syn concentration was significantly lower in DN+M group when compared to other groups (P< 0.005). Also, this group showed the highly expression for MAP-2 gene and less expression for m-TOR and α-Syn genes (P< 0.005). Moreover, there was significantly increase in autophagosomes formation in this group than another group (P< 0.005).
Conclusions: It is concluded that the melatonin promotes the differentiation of rat AD-MSCs into dopaminergic cells via induction of autophagy process and reduction of α-Syn secretion.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.